$NetBSD: patch-libraries_liblutil_sha1.c,v 1.1 2021/08/23 09:58:58 adam Exp $ --- libraries/liblutil/sha1.c.orig 2021-07-27 17:44:47.000000000 +0000 +++ libraries/liblutil/sha1.c @@ -50,10 +50,16 @@ #define SHA1HANDSOFF /* Copies data before messing with it. */ #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) +#if defined(__sparcv9) && \ + ((__GNUC__ < 3) || (__GNUC__ == 3 && __GNUC_MINOR__ < 3)) +# define SPARC64_GCC_BUG +#endif + /* * blk0() and blk() perform the initial expand. * I got the idea of expanding during the round function from SSLeay */ +#ifndef SPARC64_GCC_BUG #if BYTE_ORDER == LITTLE_ENDIAN # define blk0(i) (block[i] = (rol(block[i],24)&0xFF00FF00) \ |(rol(block[i],8)&0x00FF00FF)) @@ -62,6 +68,16 @@ #endif #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ ^block[(i+2)&15]^block[i&15],1)) +#else +#if BYTE_ORDER == LITTLE_ENDIAN +# define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ + |(rol(block->l[i],8)&0x00FF00FF)) +#else +# define blk0(i) block->l[i] +#endif +#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ + ^block->l[(i+2)&15]^block->l[i&15],1)) +#endif /* !SPARC64_GCC_BUG */ /* * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 @@ -72,6 +88,68 @@ #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); +#ifdef SPARC64_GCC_BUG +typedef union { + u_char c[64]; + uint32 l[16]; +} CHAR64LONG16; + +void do_R01(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 +*); +void do_R2(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 +*); +void do_R3(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 +*); +void do_R4(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 +*); + +#define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i) +#define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i) +#define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i) +#define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i) +#define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i) + +void +do_R01(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 *block) +{ + nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2); nR0(c,d,e,a,b, 3); + nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5); nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7); + nR0(c,d,e,a,b, 8); nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11); + nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14); nR0(a,b,c,d,e,15); + nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17); nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19); +} + +void +do_R2(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 *block) +{ + nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22); nR2(c,d,e,a,b,23); + nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25); nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27); + nR2(c,d,e,a,b,28); nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31); + nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34); nR2(a,b,c,d,e,35); + nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37); nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39); +} + +void +do_R3(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 *block) +{ + nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42); nR3(c,d,e,a,b,43); + nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45); nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47); + nR3(c,d,e,a,b,48); nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51); + nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54); nR3(a,b,c,d,e,55); + nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57); nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59); +} + +void +do_R4(uint32 *a, uint32 *b, uint32 *c, uint32 *d, uint32 *e, CHAR64LONG16 *block) +{ + nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62); nR4(c,d,e,a,b,63); + nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65); nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67); + nR4(c,d,e,a,b,68); nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71); + nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74); nR4(a,b,c,d,e,75); + nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77); nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79); +} +#endif /* SPARC64_GCC_BUG */ + /* * Hash a single 512-bit block. This is the core of the algorithm. @@ -80,13 +158,26 @@ void lutil_SHA1Transform( uint32 *state, const unsigned char *buffer ) { uint32 a, b, c, d, e; +#ifdef SPARC64_GCC_BUG + CHAR64LONG16 *block; +#endif +#ifndef SPARC64_GCC_BUG #ifdef SHA1HANDSOFF uint32 block[16]; (void)AC_MEMCPY(block, buffer, 64); #else uint32 *block = (u_int32 *) buffer; #endif +#else +#ifdef SHA1HANDSOFF + CHAR64LONG16 workspace; + block = &workspace; + (void)AC_MEMCPY(block, buffer, 64); +#else + block = (CHAR64LONG16 *) (void *) buffer; +#endif +#endif /* !SPARC64_GCC_BUG */ /* Copy context->state[] to working vars */ a = state[0]; @@ -95,6 +186,7 @@ lutil_SHA1Transform( uint32 *state, cons d = state[3]; e = state[4]; +#ifndef SPARC64_GCC_BUG /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); @@ -116,6 +208,13 @@ lutil_SHA1Transform( uint32 *state, cons R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); +#else + do_R01(&a, &b, &c, &d, &e, block); + do_R2(&a, &b, &c, &d, &e, block); + do_R3(&a, &b, &c, &d, &e, block); + do_R4(&a, &b, &c, &d, &e, block); +#endif /* !SPARC64_GCC_BUG */ + /* Add the working vars back into context.state[] */ state[0] += a;