/* $NetBSD: if_vr.c,v 1.130 2019/05/28 07:41:49 msaitoh Exp $ */ /*- * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997, 1998 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $ */ /* * VIA Rhine fast ethernet PCI NIC driver * * Supports various network adapters based on the VIA Rhine * and Rhine II PCI controllers, including the D-Link DFE530TX. * Datasheets are available at http://www.via.com.tw. * * Written by Bill Paul <wpaul@ctr.columbia.edu> * Electrical Engineering Department * Columbia University, New York City */ /* * The VIA Rhine controllers are similar in some respects to the * the DEC tulip chips, except less complicated. The controller * uses an MII bus and an external physical layer interface. The * receiver has a one entry perfect filter and a 64-bit hash table * multicast filter. Transmit and receive descriptors are similar * to the tulip. * * The Rhine has a serious flaw in its transmit DMA mechanism: * transmit buffers must be longword aligned. Unfortunately, * the kernel doesn't guarantee that mbufs will be filled in starting * at longword boundaries, so we have to do a buffer copy before * transmission. * * Apparently, the receive DMA mechanism also has the same flaw. This * means that on systems with struct alignment requirements, incoming * frames must be copied to a new buffer which shifts the data forward * 2 bytes so that the payload is aligned on a 4-byte boundary. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.130 2019/05/28 07:41:49 msaitoh Exp $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/callout.h> #include <sys/sockio.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/socket.h> #include <sys/device.h> #include <sys/rndsource.h> #include <net/if.h> #include <net/if_arp.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_ether.h> #include <net/bpf.h> #include <sys/bus.h> #include <sys/intr.h> #include <machine/endian.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/mii/mii_bitbang.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <dev/pci/pcidevs.h> #include <dev/pci/if_vrreg.h> #define VR_USEIOSPACE /* * Various supported device vendors/types and their names. */ static const struct vr_type { pci_vendor_id_t vr_vid; pci_product_id_t vr_did; } vr_devs[] = { { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A } }; /* * Transmit descriptor list size. */ #define VR_NTXDESC 64 #define VR_NTXDESC_MASK (VR_NTXDESC - 1) #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK) /* * Receive descriptor list size. */ #define VR_NRXDESC 64 #define VR_NRXDESC_MASK (VR_NRXDESC - 1) #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK) /* * Control data structres that are DMA'd to the Rhine chip. We allocate * them in a single clump that maps to a single DMA segment to make several * things easier. * * Note that since we always copy outgoing packets to aligned transmit * buffers, we can reduce the transmit descriptors to one per packet. */ struct vr_control_data { struct vr_desc vr_txdescs[VR_NTXDESC]; struct vr_desc vr_rxdescs[VR_NRXDESC]; }; #define VR_CDOFF(x) offsetof(struct vr_control_data, x) #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)]) #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)]) /* * Software state of transmit and receive descriptors. */ struct vr_descsoft { struct mbuf *ds_mbuf; /* head of mbuf chain */ bus_dmamap_t ds_dmamap; /* our DMA map */ }; struct vr_softc { device_t vr_dev; void *vr_ih; /* interrupt cookie */ bus_space_tag_t vr_bst; /* bus space tag */ bus_space_handle_t vr_bsh; /* bus space handle */ bus_dma_tag_t vr_dmat; /* bus DMA tag */ pci_chipset_tag_t vr_pc; /* PCI chipset info */ pcitag_t vr_tag; /* PCI tag */ struct ethercom vr_ec; /* Ethernet common info */ uint8_t vr_enaddr[ETHER_ADDR_LEN]; struct mii_data vr_mii; /* MII/media info */ pcireg_t vr_id; /* vendor/product ID */ uint8_t vr_revid; /* Rhine chip revision */ callout_t vr_tick_ch; /* tick callout */ bus_dmamap_t vr_cddmamap; /* control data DMA map */ #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr /* * Software state for transmit and receive descriptors. */ struct vr_descsoft vr_txsoft[VR_NTXDESC]; struct vr_descsoft vr_rxsoft[VR_NRXDESC]; /* * Control data structures. */ struct vr_control_data *vr_control_data; int vr_txpending; /* number of TX requests pending */ int vr_txdirty; /* first dirty TX descriptor */ int vr_txlast; /* last used TX descriptor */ int vr_rxptr; /* next ready RX descriptor */ uint32_t vr_save_iobase; uint32_t vr_save_membase; uint32_t vr_save_irq; bool vr_link; int vr_flags; #define VR_F_RESTART 0x1 /* restart on next tick */ int vr_if_flags; krndsource_t rnd_source; /* random source */ }; #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x))) #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x))) #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)]) #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)]) #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)]) #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)]) #define VR_CDTXSYNC(sc, x, ops) \ bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \ VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops)) #define VR_CDRXSYNC(sc, x, ops) \ bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \ VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops)) /* * Note we rely on MCLBYTES being a power of two below. */ #define VR_INIT_RXDESC(sc, i) \ do { \ struct vr_desc *__d = VR_CDRX((sc), (i)); \ struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \ \ __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \ __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \ __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \ ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \ __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \ VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \ VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \ } while (/* CONSTCOND */ 0) /* * register space access macros */ #define CSR_WRITE_4(sc, reg, val) \ bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val) #define CSR_WRITE_2(sc, reg, val) \ bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val) #define CSR_WRITE_1(sc, reg, val) \ bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val) #define CSR_READ_4(sc, reg) \ bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg) #define CSR_READ_2(sc, reg) \ bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg) #define CSR_READ_1(sc, reg) \ bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg) #define VR_TIMEOUT 1000 static int vr_add_rxbuf(struct vr_softc *, int); static void vr_rxeof(struct vr_softc *); static void vr_rxeoc(struct vr_softc *); static void vr_txeof(struct vr_softc *); static int vr_intr(void *); static void vr_start(struct ifnet *); static int vr_ioctl(struct ifnet *, u_long, void *); static int vr_init(struct ifnet *); static void vr_stop(struct ifnet *, int); static void vr_rxdrain(struct vr_softc *); static void vr_watchdog(struct ifnet *); static void vr_tick(void *); static int vr_mii_readreg(device_t, int, int, uint16_t *); static int vr_mii_writereg(device_t, int, int, uint16_t); static void vr_mii_statchg(struct ifnet *); static void vr_setmulti(struct vr_softc *); static void vr_reset(struct vr_softc *); static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t, pcireg_t); static bool vr_resume(device_t, const pmf_qual_t *); int vr_copy_small = 0; #define VR_SETBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) | (x)) #define VR_CLRBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) & ~(x)) #define VR_SETBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) | (x)) #define VR_CLRBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) & ~(x)) #define VR_SETBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define VR_CLRBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) /* * MII bit-bang glue. */ static uint32_t vr_mii_bitbang_read(device_t); static void vr_mii_bitbang_write(device_t, uint32_t); static const struct mii_bitbang_ops vr_mii_bitbang_ops = { vr_mii_bitbang_read, vr_mii_bitbang_write, { VR_MIICMD_DATAOUT, /* MII_BIT_MDO */ VR_MIICMD_DATAIN, /* MII_BIT_MDI */ VR_MIICMD_CLK, /* MII_BIT_MDC */ VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */ 0, /* MII_BIT_DIR_PHY_HOST */ } }; static uint32_t vr_mii_bitbang_read(device_t self) { struct vr_softc *sc = device_private(self); return (CSR_READ_1(sc, VR_MIICMD)); } static void vr_mii_bitbang_write(device_t self, uint32_t val) { struct vr_softc *sc = device_private(self); CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM); } /* * Read an PHY register through the MII. */ static int vr_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct vr_softc *sc = device_private(self); CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg, val)); } /* * Write to a PHY register through the MII. */ static int vr_mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct vr_softc *sc = device_private(self); CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); return mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val); } static void vr_mii_statchg(struct ifnet *ifp) { struct vr_softc *sc = ifp->if_softc; int i; /* * In order to fiddle with the 'full-duplex' bit in the netconfig * register, we first have to put the transmit and/or receive logic * in the idle state. */ if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) && IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) { sc->vr_link = true; if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON | VR_CMD_RX_ON)) VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON | VR_CMD_RX_ON)); if (sc->vr_mii.mii_media_active & IFM_FDX) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); else VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON); } else { sc->vr_link = false; VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON); for (i = VR_TIMEOUT; i > 0; i--) { delay(10); if (!(CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON | VR_CMD_RX_ON))) break; } if (i == 0) { #ifdef VR_DEBUG aprint_error_dev(sc->vr_dev, "rx shutdown error!\n"); #endif sc->vr_flags |= VR_F_RESTART; } } } #define vr_calchash(addr) \ (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26) /* * Program the 64-bit multicast hash filter. */ static void vr_setmulti(struct vr_softc *sc) { struct ethercom *ec = &sc->vr_ec; struct ifnet *ifp = &ec->ec_if; int h = 0; uint32_t hashes[2] = { 0, 0 }; struct ether_multistep step; struct ether_multi *enm; int mcnt = 0; uint8_t rxfilt; rxfilt = CSR_READ_1(sc, VR_RXCFG); if (ifp->if_flags & IFF_PROMISC) { allmulti: ifp->if_flags |= IFF_ALLMULTI; rxfilt |= VR_RXCFG_RX_MULTI; CSR_WRITE_1(sc, VR_RXCFG, rxfilt); CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, VR_MAR0, 0); CSR_WRITE_4(sc, VR_MAR1, 0); /* now program new ones */ ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { ETHER_UNLOCK(ec); goto allmulti; } h = vr_calchash(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); mcnt++; } ETHER_UNLOCK(ec); ifp->if_flags &= ~IFF_ALLMULTI; if (mcnt) rxfilt |= VR_RXCFG_RX_MULTI; else rxfilt &= ~VR_RXCFG_RX_MULTI; CSR_WRITE_4(sc, VR_MAR0, hashes[0]); CSR_WRITE_4(sc, VR_MAR1, hashes[1]); CSR_WRITE_1(sc, VR_RXCFG, rxfilt); } static void vr_reset(struct vr_softc *sc) { int i; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET); for (i = 0; i < VR_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET)) break; } if (i == VR_TIMEOUT) { if (sc->vr_revid < REV_ID_VT3065_A) { aprint_error_dev(sc->vr_dev, "reset never completed!\n"); } else { /* Use newer force reset command */ aprint_normal_dev(sc->vr_dev, "using force reset command.\n"); VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST); } } /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); } /* * Initialize an RX descriptor and attach an MBUF cluster. * Note: the length fields are only 11 bits wide, which means the * largest size we can specify is 2047. This is important because * MCLBYTES is 2048, so we have to subtract one otherwise we'll * overflow the field and make a mess. */ static int vr_add_rxbuf(struct vr_softc *sc, int i) { struct vr_descsoft *ds = VR_DSRX(sc, i); struct mbuf *m_new; int error; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return (ENOBUFS); MCLGET(m_new, M_DONTWAIT); if ((m_new->m_flags & M_EXT) == 0) { m_freem(m_new); return (ENOBUFS); } if (ds->ds_mbuf != NULL) bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); ds->ds_mbuf = m_new; error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap, m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n", i, error); panic("vr_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); VR_INIT_RXDESC(sc, i); return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void vr_rxeof(struct vr_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct vr_desc *d; struct vr_descsoft *ds; int i, total_len; uint32_t rxstat; ifp = &sc->vr_ec.ec_if; for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) { d = VR_CDRX(sc, i); ds = VR_DSRX(sc, i); VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = le32toh(d->vr_status); if (rxstat & VR_RXSTAT_OWN) { /* * We have processed all of the receive buffers. */ break; } /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & VR_RXSTAT_RXERR) { const char *errstr; ifp->if_ierrors++; switch (rxstat & 0x000000FF) { case VR_RXSTAT_CRCERR: errstr = "crc error"; break; case VR_RXSTAT_FRAMEALIGNERR: errstr = "frame alignment error"; break; case VR_RXSTAT_FIFOOFLOW: errstr = "FIFO overflow"; break; case VR_RXSTAT_GIANT: errstr = "received giant packet"; break; case VR_RXSTAT_RUNT: errstr = "received runt packet"; break; case VR_RXSTAT_BUSERR: errstr = "system bus error"; break; case VR_RXSTAT_BUFFERR: errstr = "rx buffer error"; break; default: errstr = "unknown rx error"; break; } aprint_error_dev(sc->vr_dev, "receive error: %s\n", errstr); VR_INIT_RXDESC(sc, i); continue; } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) || !(rxstat & VR_RXSTAT_LASTFRAG)) { /* * This driver expects to receive whole packets every * time. In case we receive a fragment that is not * a complete packet, we discard it. */ ifp->if_ierrors++; aprint_error_dev(sc->vr_dev, "receive error: incomplete frame; " "size = %d, status = 0x%x\n", VR_RXBYTES(le32toh(d->vr_status)), rxstat); VR_INIT_RXDESC(sc, i); continue; } bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* No errors; receive the packet. */ total_len = VR_RXBYTES(le32toh(d->vr_status)); #ifdef DIAGNOSTIC if (total_len == 0) { /* * If we receive a zero-length packet, we probably * missed to handle an error condition above. * Discard it to avoid a later crash. */ ifp->if_ierrors++; aprint_error_dev(sc->vr_dev, "receive error: zero-length packet; " "status = 0x%x\n", rxstat); VR_INIT_RXDESC(sc, i); continue; } #endif /* * The Rhine chip includes the CRC with every packet. * Trim it off here. */ total_len -= ETHER_CRC_LEN; #ifdef __NO_STRICT_ALIGNMENT /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when we receive lots * of small packets. * * Otherwise, we add a new buffer to the receive * chain. If this fails, we drop the packet and * recycle the old buffer. */ if (vr_copy_small != 0 && total_len <= MHLEN) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) goto dropit; memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), total_len); VR_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); } else { m = ds->ds_mbuf; if (vr_add_rxbuf(sc, i) == ENOBUFS) { dropit: ifp->if_ierrors++; VR_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } } #else /* * The Rhine's packet buffers must be 4-byte aligned. * But this means that the data after the Ethernet header * is misaligned. We must allocate a new buffer and * copy the data, shifted forward 2 bytes. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { dropit: ifp->if_ierrors++; VR_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } if (total_len > (MHLEN - 2)) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); goto dropit; } } m->m_data += 2; /* * Note that we use clusters for incoming frames, so the * buffer is virtually contiguous. */ memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), total_len); /* Allow the receive descriptor to continue using its mbuf. */ VR_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); #endif /* __NO_STRICT_ALIGNMENT */ m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = total_len; /* Pass it on. */ if_percpuq_enqueue(ifp->if_percpuq, m); } /* Update the receive pointer. */ sc->vr_rxptr = i; } void vr_rxeoc(struct vr_softc *sc) { struct ifnet *ifp; int i; ifp = &sc->vr_ec.ec_if; ifp->if_ierrors++; VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); for (i = 0; i < VR_TIMEOUT; i++) { DELAY(10); if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0) break; } if (i == VR_TIMEOUT) { /* XXX need reset? */ aprint_error_dev(sc->vr_dev, "RX shutdown never completed\n"); } vr_rxeof(sc); CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr)); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void vr_txeof(struct vr_softc *sc) { struct ifnet *ifp = &sc->vr_ec.ec_if; struct vr_desc *d; struct vr_descsoft *ds; uint32_t txstat; int i, j; ifp->if_flags &= ~IFF_OACTIVE; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (i = sc->vr_txdirty; sc->vr_txpending != 0; i = VR_NEXTTX(i), sc->vr_txpending--) { d = VR_CDTX(sc, i); ds = VR_DSTX(sc, i); VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); txstat = le32toh(d->vr_status); if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) { VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); for (j = 0; j < VR_TIMEOUT; j++) { DELAY(10); if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON) == 0) break; } if (j == VR_TIMEOUT) { /* XXX need reset? */ aprint_error_dev(sc->vr_dev, "TX shutdown never completed\n"); } d->vr_status = htole32(VR_TXSTAT_OWN); CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i)); break; } if (txstat & VR_TXSTAT_OWN) break; bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); m_freem(ds->ds_mbuf); ds->ds_mbuf = NULL; if (txstat & VR_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & VR_TXSTAT_DEFER) ifp->if_collisions++; if (txstat & VR_TXSTAT_LATECOLL) ifp->if_collisions++; } ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3; ifp->if_opackets++; } /* Update the dirty transmit buffer pointer. */ sc->vr_txdirty = i; /* * Cancel the watchdog timer if there are no pending * transmissions. */ if (sc->vr_txpending == 0) ifp->if_timer = 0; } static int vr_intr(void *arg) { struct vr_softc *sc; struct ifnet *ifp; uint16_t status; int handled = 0, dotx = 0; sc = arg; ifp = &sc->vr_ec.ec_if; /* Suppress unwanted interrupts. */ if ((ifp->if_flags & IFF_UP) == 0) { vr_stop(ifp, 1); return (0); } /* Disable interrupts. */ CSR_WRITE_2(sc, VR_IMR, 0x0000); for (;;) { status = CSR_READ_2(sc, VR_ISR); if (status) CSR_WRITE_2(sc, VR_ISR, status); if ((status & VR_INTRS) == 0) break; handled = 1; rnd_add_uint32(&sc->rnd_source, status); if (status & VR_ISR_RX_OK) vr_rxeof(sc); if (status & VR_ISR_RX_DROPPED) { aprint_error_dev(sc->vr_dev, "rx packet lost\n"); ifp->if_ierrors++; } if (status & (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) vr_rxeoc(sc); if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) { if (status & VR_ISR_BUSERR) aprint_error_dev(sc->vr_dev, "PCI bus error\n"); if (status & VR_ISR_TX_UNDERRUN) aprint_error_dev(sc->vr_dev, "transmit underrun\n"); /* vr_init() calls vr_start() */ dotx = 0; (void)vr_init(ifp); } if (status & VR_ISR_TX_OK) { dotx = 1; vr_txeof(sc); } if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) { if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2)) aprint_error_dev(sc->vr_dev, "transmit aborted\n"); if (status & VR_ISR_TX_UDFI) aprint_error_dev(sc->vr_dev, "transmit underflow\n"); ifp->if_oerrors++; dotx = 1; vr_txeof(sc); if (sc->vr_txpending) { VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); } } } /* Re-enable interrupts. */ CSR_WRITE_2(sc, VR_IMR, VR_INTRS); if (dotx) if_schedule_deferred_start(ifp); return (handled); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void vr_start(struct ifnet *ifp) { struct vr_softc *sc = ifp->if_softc; struct mbuf *m0, *m; struct vr_desc *d; struct vr_descsoft *ds; int error, firsttx, nexttx, opending; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; if (sc->vr_link == false) return; /* * Remember the previous txpending and the first transmit * descriptor we use. */ opending = sc->vr_txpending; firsttx = VR_NEXTTX(sc->vr_txlast); /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ while (sc->vr_txpending < VR_NTXDESC) { /* * Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; m = NULL; /* * Get the next available transmit descriptor. */ nexttx = VR_NEXTTX(sc->vr_txlast); d = VR_CDTX(sc, nexttx); ds = VR_DSTX(sc, nexttx); /* * Load the DMA map. If this fails, the packet didn't * fit in one DMA segment, and we need to copy. Note, * the packet must also be aligned. * if the packet is too small, copy it too, so we're sure * we have enough room for the pad buffer. */ if ((mtod(m0, uintptr_t) & 3) != 0 || m0->m_pkthdr.len < VR_MIN_FRAMELEN || bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { aprint_error_dev(sc->vr_dev, "unable to allocate Tx mbuf\n"); break; } if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { aprint_error_dev(sc->vr_dev, "unable to allocate Tx cluster\n"); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; /* * The Rhine doesn't auto-pad, so we have to do this * ourselves. */ if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) { memset(mtod(m, char *) + m0->m_pkthdr.len, 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len); m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN; } error = bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { m_freem(m); aprint_error_dev(sc->vr_dev, "unable to load " "Tx buffer, error = %d\n", error); break; } } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m != NULL) { m_freem(m0); m0 = m; } /* Sync the DMA map. */ bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Store a pointer to the packet so we can free it later. */ ds->ds_mbuf = m0; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(ifp, m0, BPF_D_OUT); /* * Fill in the transmit descriptor. */ d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr); d->vr_ctl = htole32(m0->m_pkthdr.len); d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG); /* * If this is the first descriptor we're enqueuing, * don't give it to the Rhine yet. That could cause * a race condition. We'll do it below. */ if (nexttx == firsttx) d->vr_status = 0; else d->vr_status = htole32(VR_TXSTAT_OWN); VR_CDTXSYNC(sc, nexttx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Advance the tx pointer. */ sc->vr_txpending++; sc->vr_txlast = nexttx; } if (sc->vr_txpending == VR_NTXDESC) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (sc->vr_txpending != opending) { /* * We enqueued packets. If the transmitter was idle, * reset the txdirty pointer. */ if (opending == 0) sc->vr_txdirty = firsttx; /* * Cause a transmit interrupt to happen on the * last packet we enqueued. */ VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT); VR_CDTXSYNC(sc, sc->vr_txlast, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * The entire packet chain is set up. Give the * first descriptor to the Rhine now. */ VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN); VR_CDTXSYNC(sc, firsttx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Start the transmitter. */ VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); /* Set the watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } /* * Initialize the interface. Must be called at splnet. */ static int vr_init(struct ifnet *ifp) { struct vr_softc *sc = ifp->if_softc; struct vr_desc *d; struct vr_descsoft *ds; int i, error = 0; /* Cancel pending I/O. */ vr_stop(ifp, 0); /* Reset the Rhine to a known state. */ vr_reset(sc); /* set DMA length in BCR0 and BCR1 */ VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH); VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD); VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH); VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES); VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH); VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD); /* set DMA threshold length in RXCFG and TXCFG */ VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES); VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD); /* * Initialize the transmit descriptor ring. txlast is initialized * to the end of the list so that it will wrap around to the first * descriptor when the first packet is transmitted. */ for (i = 0; i < VR_NTXDESC; i++) { d = VR_CDTX(sc, i); memset(d, 0, sizeof(struct vr_desc)); d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i))); VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } sc->vr_txpending = 0; sc->vr_txdirty = 0; sc->vr_txlast = VR_NTXDESC - 1; /* * Initialize the receive descriptor ring. */ for (i = 0; i < VR_NRXDESC; i++) { ds = VR_DSRX(sc, i); if (ds->ds_mbuf == NULL) { if ((error = vr_add_rxbuf(sc, i)) != 0) { aprint_error_dev(sc->vr_dev, "unable to allocate or map rx buffer %d, " "error = %d\n", i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ vr_rxdrain(sc); goto out; } } else VR_INIT_RXDESC(sc, i); } sc->vr_rxptr = 0; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); else VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); /* Program the multicast filter, if necessary. */ vr_setmulti(sc); /* Give the transmit and receive rings to the Rhine. */ CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr)); CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast))); /* Set current media. */ sc->vr_link = true; if ((error = ether_mediachange(ifp)) != 0) goto out; /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL | VR_CMD_START | VR_CMD_TX_ON | VR_CMD_RX_ON | VR_CMD_RX_GO); /* Enable interrupts. */ CSR_WRITE_2(sc, VR_ISR, 0xFFFF); CSR_WRITE_2(sc, VR_IMR, VR_INTRS); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* Start one second timer. */ callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc); /* Attempt to start output on the interface. */ vr_start(ifp); out: if (error) aprint_error_dev(sc->vr_dev, "interface not running\n"); return (error); } static int vr_ioctl(struct ifnet *ifp, u_long command, void *data) { struct vr_softc *sc = ifp->if_softc; int s, error = 0; s = splnet(); switch (command) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, command, data)) != 0) break; switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { case IFF_RUNNING: vr_stop(ifp, 1); break; case IFF_UP: vr_init(ifp); break; case IFF_UP | IFF_RUNNING: if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC) vr_setmulti(sc); else vr_init(ifp); break; } sc->vr_if_flags = ifp->if_flags; break; default: if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) break; error = 0; if (command == SIOCADDMULTI || command == SIOCDELMULTI) vr_setmulti(sc); } splx(s); return error; } static void vr_watchdog(struct ifnet *ifp) { struct vr_softc *sc = ifp->if_softc; aprint_error_dev(sc->vr_dev, "device timeout\n"); ifp->if_oerrors++; (void) vr_init(ifp); } /* * One second timer, used to tick MII. */ static void vr_tick(void *arg) { struct vr_softc *sc = arg; int s; s = splnet(); if (sc->vr_flags & VR_F_RESTART) { aprint_normal_dev(sc->vr_dev, "restarting\n"); vr_init(&sc->vr_ec.ec_if); sc->vr_flags &= ~VR_F_RESTART; } mii_tick(&sc->vr_mii); splx(s); callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc); } /* * Drain the receive queue. */ static void vr_rxdrain(struct vr_softc *sc) { struct vr_descsoft *ds; int i; for (i = 0; i < VR_NRXDESC; i++) { ds = VR_DSRX(sc, i); if (ds->ds_mbuf != NULL) { bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); m_freem(ds->ds_mbuf); ds->ds_mbuf = NULL; } } } /* * Stop the adapter and free any mbufs allocated to the * transmit lists. */ static void vr_stop(struct ifnet *ifp, int disable) { struct vr_softc *sc = ifp->if_softc; struct vr_descsoft *ds; int i; /* Cancel one second timer. */ callout_stop(&sc->vr_tick_ch); /* Down the MII. */ mii_down(&sc->vr_mii); ifp = &sc->vr_ec.ec_if; ifp->if_timer = 0; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP); VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON | VR_CMD_TX_ON)); CSR_WRITE_2(sc, VR_IMR, 0x0000); CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); /* * Release any queued transmit buffers. */ for (i = 0; i < VR_NTXDESC; i++) { ds = VR_DSTX(sc, i); if (ds->ds_mbuf != NULL) { bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap); m_freem(ds->ds_mbuf); ds->ds_mbuf = NULL; } } /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; if (disable) vr_rxdrain(sc); } static int vr_probe(device_t, cfdata_t, void *); static void vr_attach(device_t, device_t, void *); static bool vr_shutdown(device_t, int); CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc), vr_probe, vr_attach, NULL, NULL); static const struct vr_type * vr_lookup(struct pci_attach_args *pa) { const struct vr_type *vrt; int i; for (i = 0; i < __arraycount(vr_devs); i++) { vrt = &vr_devs[i]; if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid && PCI_PRODUCT(pa->pa_id) == vrt->vr_did) return (vrt); } return (NULL); } static int vr_probe(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (vr_lookup(pa) != NULL) return (1); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static bool vr_shutdown(device_t self, int howto) { struct vr_softc *sc = device_private(self); vr_stop(&sc->vr_ec.ec_if, 1); return true; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static void vr_attach(device_t parent, device_t self, void *aux) { struct vr_softc *sc = device_private(self); struct pci_attach_args *pa = (struct pci_attach_args *) aux; bus_dma_segment_t seg; uint32_t reg; struct ifnet *ifp; struct mii_data * const mii = &sc->vr_mii; uint8_t eaddr[ETHER_ADDR_LEN], mac; int i, rseg, error; char intrbuf[PCI_INTRSTR_LEN]; #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v)) #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r)) sc->vr_dev = self; sc->vr_pc = pa->pa_pc; sc->vr_tag = pa->pa_tag; sc->vr_id = pa->pa_id; callout_init(&sc->vr_tick_ch, 0); pci_aprint_devinfo(pa, NULL); /* * Handle power management nonsense. */ sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO); sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM); sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG); /* power up chip */ if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, vr_restore_state)) && error != EOPNOTSUPP) { aprint_error_dev(self, "cannot activate %d\n", error); return; } /* Make sure bus mastering is enabled. */ reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG); reg |= PCI_COMMAND_MASTER_ENABLE; PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg); /* Get revision */ sc->vr_revid = PCI_REVISION(pa->pa_class); /* * Map control/status registers. */ { bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; int ioh_valid, memh_valid; pci_intr_handle_t intrhandle; const char *intrstr; ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); #if defined(VR_USEIOSPACE) if (ioh_valid) { sc->vr_bst = iot; sc->vr_bsh = ioh; } else if (memh_valid) { sc->vr_bst = memt; sc->vr_bsh = memh; } #else if (memh_valid) { sc->vr_bst = memt; sc->vr_bsh = memh; } else if (ioh_valid) { sc->vr_bst = iot; sc->vr_bsh = ioh; } #endif else { aprint_error_dev(self, "unable to map device registers\n"); return; } /* Allocate interrupt */ if (pci_intr_map(pa, &intrhandle)) { aprint_error_dev(self, "couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf)); sc->vr_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET, vr_intr, sc, device_xname(self)); if (sc->vr_ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); } /* * Windows may put the chip in suspend mode when it * shuts down. Be sure to kick it in the head to wake it * up again. * * Don't touch this register on VT3043 since it causes * kernel MCHK trap on macppc. * (Note some VT86C100A chip returns a product ID of VT3043) */ if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043) VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1)); /* Reset the adapter. */ vr_reset(sc); /* * Get station address. The way the Rhine chips work, * you're not allowed to directly access the EEPROM once * they've been programmed a special way. Consequently, * we need to read the node address from the PAR registers. * * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload * of the *whole* EEPROM, not just the MAC address. This is * pretty pointless since the chip does this automatically * at powerup/reset. * I suspect the same thing applies to the other Rhine * variants, but in the absence of a data sheet for those * (and the lack of anyone else noticing the problems this * causes) I'm going to retain the old behaviour for the * other parts. * In some cases, the chip really does startup without having * read the EEPROM (kern/34812). To handle this case, we force * a reload if we see an all-zeroes MAC address. */ for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++) mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i)); if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 && PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) { VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); DELAY(200); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); } /* * A Rhine chip was detected. Inform the world. */ aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr)); memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN); sc->vr_dmat = pa->pa_dmat; /* * Allocate the control data structures, and create and load * the DMA map for it. */ if ((error = bus_dmamem_alloc(sc->vr_dmat, sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) { aprint_error_dev(self, "unable to allocate control data, error = %d\n", error); goto fail_0; } if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg, sizeof(struct vr_control_data), (void **)&sc->vr_control_data, BUS_DMA_COHERENT)) != 0) { aprint_error_dev(self, "unable to map control data, error = %d\n", error); goto fail_1; } if ((error = bus_dmamap_create(sc->vr_dmat, sizeof(struct vr_control_data), 1, sizeof(struct vr_control_data), 0, 0, &sc->vr_cddmamap)) != 0) { aprint_error_dev(self, "unable to create control data DMA map, error = %d\n", error); goto fail_2; } if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap, sc->vr_control_data, sizeof(struct vr_control_data), NULL, 0)) != 0) { aprint_error_dev(self, "unable to load control data DMA map, error = %d\n", error); goto fail_3; } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < VR_NTXDESC; i++) { if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &VR_DSTX(sc, i)->ds_dmamap)) != 0) { aprint_error_dev(self, "unable to create tx DMA map %d, error = %d\n", i, error); goto fail_4; } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < VR_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &VR_DSRX(sc, i)->ds_dmamap)) != 0) { aprint_error_dev(self, "unable to create rx DMA map %d, error = %d\n", i, error); goto fail_5; } VR_DSRX(sc, i)->ds_mbuf = NULL; } ifp = &sc->vr_ec.ec_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vr_ioctl; ifp->if_start = vr_start; ifp->if_watchdog = vr_watchdog; ifp->if_init = vr_init; ifp->if_stop = vr_stop; IFQ_SET_READY(&ifp->if_snd); strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); /* * Initialize MII/media info. */ mii->mii_ifp = ifp; mii->mii_readreg = vr_mii_readreg; mii->mii_writereg = vr_mii_writereg; mii->mii_statchg = vr_mii_statchg; sc->vr_ec.ec_mii = mii; ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, ether_mediastatus); mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG); if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; /* * Call MI attach routines. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, sc->vr_enaddr); rnd_attach_source(&sc->rnd_source, device_xname(self), RND_TYPE_NET, RND_FLAG_DEFAULT); if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); return; fail_5: for (i = 0; i < VR_NRXDESC; i++) { if (sc->vr_rxsoft[i].ds_dmamap != NULL) bus_dmamap_destroy(sc->vr_dmat, sc->vr_rxsoft[i].ds_dmamap); } fail_4: for (i = 0; i < VR_NTXDESC; i++) { if (sc->vr_txsoft[i].ds_dmamap != NULL) bus_dmamap_destroy(sc->vr_dmat, sc->vr_txsoft[i].ds_dmamap); } bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap); fail_3: bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap); fail_2: bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data, sizeof(struct vr_control_data)); fail_1: bus_dmamem_free(sc->vr_dmat, &seg, rseg); fail_0: return; } static int vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self, pcireg_t state) { struct vr_softc *sc = device_private(self); int error; if (state == PCI_PMCSR_STATE_D0) return 0; if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0))) return error; /* Restore PCI config data. */ PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase); PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase); PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq); return 0; } static bool vr_resume(device_t self, const pmf_qual_t *qual) { struct vr_softc *sc = device_private(self); if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043) VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1)); return true; }