/* $NetBSD: pmap_tlb.c,v 1.55 2022/11/07 07:28:04 skrll Exp $ */ /*- * Copyright (c) 2010 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas at 3am Software Foundry. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.55 2022/11/07 07:28:04 skrll Exp $"); /* * Manages address spaces in a TLB. * * Normally there is a 1:1 mapping between a TLB and a CPU. However, some * implementations may share a TLB between multiple CPUs (really CPU thread * contexts). This requires the TLB abstraction to be separated from the * CPU abstraction. It also requires that the TLB be locked while doing * TLB activities. * * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps * that have a valid ASID. * * We allocate ASIDs in increasing order until we have exhausted the supply, * then reinitialize the ASID space, and start allocating again at 1. When * allocating from the ASID bitmap, we skip any ASID who has a corresponding * bit set in the ASID bitmap. Eventually this causes the ASID bitmap to fill * and, when completely filled, a reinitialization of the ASID space. * * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs * of non-kernel TLB entries get recorded in the ASID bitmap. If the entries * in TLB consume more than half of the ASID space, all ASIDs are invalidated, * the ASID bitmap is recleared, and the list of pmaps is emptied. Otherwise, * (the normal case), any ASID present in the TLB (even those which are no * longer used by a pmap) will remain active (allocated) and all other ASIDs * will be freed. If the size of the TLB is much smaller than the ASID space, * this algorithm completely avoids TLB invalidation. * * For multiprocessors, we also have to deal TLB invalidation requests from * other CPUs, some of which are dealt with the reinitialization of the ASID * space. Whereas above we keep the ASIDs of those pmaps which have active * TLB entries, this type of reinitialization preserves the ASIDs of any * "onproc" user pmap and all other ASIDs will be freed. We must do this * since we can't change the current ASID. * * Each pmap has two bitmaps: pm_active and pm_onproc. Each bit in pm_active * indicates whether that pmap has an allocated ASID for a CPU. Each bit in * pm_onproc indicates that the pmap's ASID is in use, i.e. a CPU has it in its * "current ASID" field, e.g. the ASID field of the COP 0 register EntryHi for * MIPS, or the ASID field of TTBR0 for AA64. The bit number used in these * bitmaps comes from the CPU's cpu_index(). Even though these bitmaps contain * the bits for all CPUs, the bits that correspond to the bits belonging to * the CPUs sharing a TLB can only be manipulated while holding that TLB's * lock. Atomic ops must be used to update them since multiple CPUs may be * changing different sets of bits at same time but these sets never overlap. * * When a change to the local TLB may require a change in the TLB's of other * CPUs, we try to avoid sending an IPI if at all possible. For instance, if * we are updating a PTE and that PTE previously was invalid and therefore * couldn't support an active mapping, there's no need for an IPI since there * can't be a TLB entry to invalidate. The other case is when we change a PTE * to be modified we just update the local TLB. If another TLB has a stale * entry, a TLB MOD exception will be raised and that will cause the local TLB * to be updated. * * We never need to update a non-local TLB if the pmap doesn't have a valid * ASID for that TLB. If it does have a valid ASID but isn't current "onproc" * we simply reset its ASID for that TLB and then when it goes "onproc" it * will allocate a new ASID and any existing TLB entries will be orphaned. * Only in the case that pmap has an "onproc" ASID do we actually have to send * an IPI. * * Once we determined we must send an IPI to shootdown a TLB, we need to send * it to one of CPUs that share that TLB. We choose the lowest numbered CPU * that has one of the pmap's ASID "onproc". In reality, any CPU sharing that * TLB would do, but interrupting an active CPU seems best. * * A TLB might have multiple shootdowns active concurrently. The shootdown * logic compresses these into a few cases: * 0) nobody needs to have its TLB entries invalidated * 1) one ASID needs to have its TLB entries invalidated * 2) more than one ASID needs to have its TLB entries invalidated * 3) the kernel needs to have its TLB entries invalidated * 4) the kernel and one or more ASID need their TLB entries invalidated. * * And for each case we do: * 0) nothing, * 1) if that ASID is still "onproc", we invalidate the TLB entries for * that single ASID. If not, just reset the pmap's ASID to invalidate * and let it allocate a new ASID the next time it goes "onproc", * 2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and * invalidate all non-wired non-global TLB entries, * 3) we invalidate all of the non-wired global TLB entries, * 4) we reinitialize the ASID space (again preserving any "onproc" ASIDs) * invalidate all non-wired TLB entries. * * As you can see, shootdowns are not concerned with addresses, just address * spaces. Since the number of TLB entries is usually quite small, this avoids * a lot of overhead for not much gain. */ #define __PMAP_PRIVATE #include "opt_multiprocessor.h" #include <sys/param.h> #include <sys/atomic.h> #include <sys/cpu.h> #include <sys/kernel.h> /* for cold */ #include <sys/mutex.h> #include <sys/proc.h> #include <sys/systm.h> #include <uvm/uvm.h> static kmutex_t pmap_tlb0_lock __cacheline_aligned; #define IFCONSTANT(x) (__builtin_constant_p((x)) ? (x) : 0) #if KERNEL_PID > 31 #error "KERNEL_PID expected in range 0-31" #endif #define TLBINFO_ASID_MARK_UNUSED(ti, asid) \ __BITMAP_CLR((asid), &(ti)->ti_asid_bitmap) #define TLBINFO_ASID_MARK_USED(ti, asid) \ __BITMAP_SET((asid), &(ti)->ti_asid_bitmap) #define TLBINFO_ASID_INUSE_P(ti, asid) \ __BITMAP_ISSET((asid), &(ti)->ti_asid_bitmap) #define TLBINFO_ASID_RESET(ti) \ do { \ __BITMAP_ZERO(&ti->ti_asid_bitmap); \ for (tlb_asid_t asid = 0; asid <= KERNEL_PID; asid++) \ TLBINFO_ASID_MARK_USED(ti, asid); \ } while (0) #define TLBINFO_ASID_INITIAL_FREE(asid_max) \ (asid_max + 1 /* 0 */ - (1 + KERNEL_PID)) struct pmap_tlb_info pmap_tlb0_info = { .ti_name = "tlb0", .ti_asid_hint = KERNEL_PID + 1, #ifdef PMAP_TLB_NUM_PIDS .ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1), .ti_asids_free = IFCONSTANT( TLBINFO_ASID_INITIAL_FREE(PMAP_TLB_NUM_PIDS - 1)), #endif .ti_asid_bitmap._b[0] = __BITS(0, KERNEL_PID), #ifdef PMAP_TLB_WIRED_UPAGES .ti_wired = PMAP_TLB_WIRED_UPAGES, #endif .ti_lock = &pmap_tlb0_lock, .ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais), #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 .ti_tlbinvop = TLBINV_NOBODY, #endif }; #undef IFCONSTANT #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 struct pmap_tlb_info *pmap_tlbs[PMAP_TLB_MAX] = { [0] = &pmap_tlb0_info, }; u_int pmap_ntlbs = 1; #endif #ifdef MULTIPROCESSOR __unused static inline bool pmap_tlb_intersecting_active_p(pmap_t pm, struct pmap_tlb_info *ti) { #if PMAP_TLB_MAX == 1 return !kcpuset_iszero(pm->pm_active); #else return kcpuset_intersecting_p(pm->pm_active, ti->ti_kcpuset); #endif } static inline bool pmap_tlb_intersecting_onproc_p(pmap_t pm, struct pmap_tlb_info *ti) { #if PMAP_TLB_MAX == 1 return !kcpuset_iszero(pm->pm_onproc); #else return kcpuset_intersecting_p(pm->pm_onproc, ti->ti_kcpuset); #endif } #endif static void pmap_tlb_pai_check(struct pmap_tlb_info *ti, bool locked_p) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, "(ti=%#jx)", (uintptr_t)ti, 0, 0, 0); #ifdef DIAGNOSTIC struct pmap_asid_info *pai; if (!locked_p) TLBINFO_LOCK(ti); LIST_FOREACH(pai, &ti->ti_pais, pai_link) { KASSERT(pai != NULL); KASSERT(PAI_PMAP(pai, ti) != pmap_kernel()); KASSERT(pai->pai_asid > KERNEL_PID); KASSERTMSG(pai->pai_asid <= ti->ti_asid_max, "pm %p asid %#x", PAI_PMAP(pai, ti), pai->pai_asid); KASSERTMSG(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid), "pm %p asid %u", PAI_PMAP(pai, ti), pai->pai_asid); #ifdef MULTIPROCESSOR KASSERT(pmap_tlb_intersecting_active_p(PAI_PMAP(pai, ti), ti)); #endif } if (!locked_p) TLBINFO_UNLOCK(ti); #endif UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); } static void pmap_tlb_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai, struct pmap *pm) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, "(ti=%#jx, pai=%#jx, pm=%#jx): asid %u", (uintptr_t)ti, (uintptr_t)pai, (uintptr_t)pm, pai->pai_asid); /* * We must have an ASID but it must not be onproc (on a processor). */ KASSERT(pai->pai_asid > KERNEL_PID); KASSERT(pai->pai_asid <= ti->ti_asid_max); #if defined(MULTIPROCESSOR) KASSERT(pmap_tlb_intersecting_active_p(pm, ti)); KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); #endif LIST_REMOVE(pai, pai_link); #ifdef DIAGNOSTIC pai->pai_link.le_prev = NULL; /* tagged as unlinked */ #endif /* * If the platform has a cheap way to flush ASIDs then free the ASID * back into the pool. On multiprocessor systems, we will flush the * ASID from the TLB when it's allocated. That way we know the flush * was always done in the correct TLB space. On uniprocessor systems, * just do the flush now since we know that it has been used. This has * a bit less overhead. Either way, this will mean that we will only * need to flush all ASIDs if all ASIDs are in use and we need to * allocate a new one. */ if (PMAP_TLB_FLUSH_ASID_ON_RESET) { #ifndef MULTIPROCESSOR UVMHIST_LOG(maphist, " ... asid %u flushed", pai->pai_asid, 0, 0, 0); tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); #endif if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { UVMHIST_LOG(maphist, " ... asid marked unused", pai->pai_asid, 0, 0, 0); TLBINFO_ASID_MARK_UNUSED(ti, pai->pai_asid); ti->ti_asids_free++; } } /* * Note that we don't mark the ASID as not in use in the TLB's ASID * bitmap (thus it can't be allocated until the ASID space is exhausted * and therefore reinitialized). We don't want to flush the TLB for * entries belonging to this ASID so we will let natural TLB entry * replacement flush them out of the TLB. Any new entries for this * pmap will need a new ASID allocated. */ pai->pai_asid = 0; #if defined(MULTIPROCESSOR) /* * The bits in pm_active belonging to this TLB can only be changed * while this TLB's lock is held. */ #if PMAP_TLB_MAX == 1 kcpuset_zero(pm->pm_active); #else kcpuset_remove(pm->pm_active, ti->ti_kcpuset); #endif KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); #endif /* MULTIPROCESSOR */ UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); } void pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti) { #if defined(MULTIPROCESSOR) && !defined(PMAP_TLB_NO_SYNCI_EVCNT) evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired, EVCNT_TYPE_MISC, NULL, ti->ti_name, "icache syncs desired"); evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts, EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, ti->ti_name, "icache sync asts"); evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all, EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, ti->ti_name, "icache full syncs"); evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages, EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, ti->ti_name, "icache pages synced"); evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate, EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, ti->ti_name, "icache dup pages skipped"); evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred, EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, ti->ti_name, "icache pages deferred"); #endif /* MULTIPROCESSOR && !PMAP_TLB_NO_SYNCI_EVCNT */ evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits, EVCNT_TYPE_MISC, NULL, ti->ti_name, "asid pool reinit"); } void pmap_tlb_info_init(struct pmap_tlb_info *ti) { #if defined(MULTIPROCESSOR) #if PMAP_TLB_MAX == 1 KASSERT(ti == &pmap_tlb0_info); #else if (ti != &pmap_tlb0_info) { KASSERT(pmap_ntlbs < PMAP_TLB_MAX); KASSERT(pmap_tlbs[pmap_ntlbs] == NULL); ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); TLBINFO_ASID_RESET(ti); ti->ti_asid_hint = KERNEL_PID + 1; ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max; ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); ti->ti_tlbinvop = TLBINV_NOBODY; ti->ti_victim = NULL; kcpuset_create(&ti->ti_kcpuset, true); ti->ti_index = pmap_ntlbs++; ti->ti_wired = 0; pmap_tlbs[ti->ti_index] = ti; snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u", ti->ti_index); pmap_tlb_info_evcnt_attach(ti); KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); return; } #endif #endif /* MULTIPROCESSOR */ KASSERT(ti == &pmap_tlb0_info); KASSERT(ti->ti_lock == &pmap_tlb0_lock); mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED); #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 kcpuset_create(&ti->ti_kcpuset, true); kcpuset_set(ti->ti_kcpuset, cpu_index(curcpu())); #endif const tlb_asid_t asid_max = pmap_md_tlb_asid_max(); if (ti->ti_asid_max == 0 || asid_max < ti->ti_asid_max) { ti->ti_asid_max = asid_max; ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); } KASSERT(__type_fit(tlb_asid_t, ti->ti_asid_max + 1)); KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); } #if defined(MULTIPROCESSOR) void pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci) { KASSERT(!CPU_IS_PRIMARY(ci)); KASSERT(ci->ci_data.cpu_idlelwp != NULL); KASSERT(cold); TLBINFO_LOCK(ti); #if PMAP_TLB_MAX > 1 kcpuset_set(ti->ti_kcpuset, cpu_index(ci)); cpu_set_tlb_info(ci, ti); #endif /* * Do any MD tlb info init. */ pmap_md_tlb_info_attach(ti, ci); /* * The kernel pmap uses the kcpuset_running set so it's always * up-to-date. */ TLBINFO_UNLOCK(ti); } #endif /* MULTIPROCESSOR */ #ifdef DIAGNOSTIC static size_t pmap_tlb_asid_count(struct pmap_tlb_info *ti) { size_t count = 0; for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) { if (TLBINFO_ASID_INUSE_P(ti, asid)) count++; } return count; } #endif static void pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, "(ti=%#jx, op=%ju)", (uintptr_t)ti, op, 0, 0); pmap_tlb_pai_check(ti, true); ti->ti_evcnt_asid_reinits.ev_count++; /* * First, clear the ASID bitmap (except for ASID 0 which belongs * to the kernel). */ ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); ti->ti_asid_hint = KERNEL_PID + 1; TLBINFO_ASID_RESET(ti); switch (op) { #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) case TLBINV_ALL: tlb_invalidate_all(); break; case TLBINV_ALLUSER: tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); break; #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ case TLBINV_NOBODY: { /* * If we are just reclaiming ASIDs in the TLB, let's go find * what ASIDs are in use in the TLB. Since this is a * semi-expensive operation, we don't want to do it too often. * So if more half of the ASIDs are in use, we don't have * enough free ASIDs so invalidate the TLB entries with ASIDs * and clear the ASID bitmap. That will force everyone to * allocate a new ASID. */ #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) pmap_tlb_asid_check(); const u_int asids_found = tlb_record_asids( ti->ti_asid_bitmap._b, ti->ti_asid_max); pmap_tlb_asid_check(); #ifdef DIAGNOSTIC const u_int asids_count = pmap_tlb_asid_count(ti); KASSERTMSG(asids_found == asids_count, "found %u != count %u", asids_found, asids_count); #endif if (__predict_false(asids_found >= ti->ti_asid_max / 2)) { tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); #else /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ /* * For those systems (PowerPC) that don't require * cross cpu TLB shootdowns, we have to invalidate the * entire TLB because we can't record the ASIDs in use * on the other CPUs. This is hopefully cheaper than * than trying to use an IPI to record all the ASIDs * on all the CPUs (which would be a synchronization * nightmare). */ tlb_invalidate_all(); #endif /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ TLBINFO_ASID_RESET(ti); ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE( ti->ti_asid_max); #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) } else { ti->ti_asids_free -= asids_found; } #endif /* !MULTIPROCESSOR || PMAP_TLB_NEED_SHOOTDOWN */ KASSERTMSG(ti->ti_asids_free <= ti->ti_asid_max, "%u", ti->ti_asids_free); break; } default: panic("%s: unexpected op %d", __func__, op); } /* * Now go through the active ASIDs. If the ASID is on a processor or * we aren't invalidating all ASIDs and the TLB has an entry owned by * that ASID, mark it as in use. Otherwise release the ASID. */ struct pmap_asid_info *pai, *next; for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) { struct pmap * const pm = PAI_PMAP(pai, ti); next = LIST_NEXT(pai, pai_link); KASSERT(pm != pmap_kernel()); KASSERT(pai->pai_asid > KERNEL_PID); #if defined(MULTIPROCESSOR) if (pmap_tlb_intersecting_onproc_p(pm, ti)) { if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); ti->ti_asids_free--; } continue; } #endif /* MULTIPROCESSOR */ if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { KASSERT(op == TLBINV_NOBODY); } else { pmap_tlb_pai_reset(ti, pai, pm); } } #ifdef DIAGNOSTIC size_t free_count __diagused = ti->ti_asid_max - pmap_tlb_asid_count(ti); KASSERTMSG(free_count == ti->ti_asids_free, "bitmap error: %zu != %u", free_count, ti->ti_asids_free); #endif UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); } #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) #if PMAP_TLB_MAX == 1 #error shootdown not required for single TLB systems #endif void pmap_tlb_shootdown_process(void) { struct cpu_info * const ci = curcpu(); struct pmap_tlb_info * const ti = cpu_tlb_info(ci); UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); KASSERT(cpu_intr_p()); KASSERTMSG(ci->ci_cpl >= IPL_SCHED, "%s: cpl (%d) < IPL_SCHED (%d)", __func__, ci->ci_cpl, IPL_SCHED); TLBINFO_LOCK(ti); UVMHIST_LOG(maphist, "ti %#jx", ti, 0, 0, 0); switch (ti->ti_tlbinvop) { case TLBINV_ONE: { /* * We only need to invalidate one user ASID. */ UVMHIST_LOG(maphist, "TLBINV_ONE ti->ti_victim %#jx", ti->ti_victim, 0, 0, 0); struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti); KASSERT(ti->ti_victim != pmap_kernel()); if (pmap_tlb_intersecting_onproc_p(ti->ti_victim, ti)) { UVMHIST_LOG(maphist, "pmap_tlb_intersecting_onproc_p", 0, 0, 0, 0); /* * The victim is an active pmap so we will just * invalidate its TLB entries. */ KASSERT(pai->pai_asid > KERNEL_PID); pmap_tlb_asid_check(); tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); pmap_tlb_asid_check(); } else if (pai->pai_asid) { UVMHIST_LOG(maphist, "asid %jd", pai->pai_asid, 0, 0, 0); /* * The victim is no longer an active pmap for this TLB. * So simply clear its ASID and when pmap_activate is * next called for this pmap, it will allocate a new * ASID. */ pmap_tlb_pai_reset(ti, pai, PAI_PMAP(pai, ti)); } break; } case TLBINV_ALLUSER: /* * Flush all user TLB entries. */ pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER); break; case TLBINV_ALLKERNEL: /* * We need to invalidate all global TLB entries. */ pmap_tlb_asid_check(); tlb_invalidate_globals(); pmap_tlb_asid_check(); break; case TLBINV_ALL: /* * Flush all the TLB entries (user and kernel). */ pmap_tlb_asid_reinitialize(ti, TLBINV_ALL); break; case TLBINV_NOBODY: /* * Might be spurious or another SMT CPU sharing this TLB * could have already done the work. */ break; } /* * Indicate we are done with shutdown event. */ ti->ti_victim = NULL; ti->ti_tlbinvop = TLBINV_NOBODY; TLBINFO_UNLOCK(ti); } /* * This state machine could be encoded into an array of integers but since all * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which * can be loaded in a single instruction. */ #define TLBINV_MAP(op, nobody, one, alluser, allkernel, all) \ (((( (nobody) << 3 * TLBINV_NOBODY) \ | ( (one) << 3 * TLBINV_ONE) \ | ( (alluser) << 3 * TLBINV_ALLUSER) \ | ((allkernel) << 3 * TLBINV_ALLKERNEL) \ | ( (all) << 3 * TLBINV_ALL)) >> 3 * (op)) & 7) #define TLBINV_USER_MAP(op) \ TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER, \ TLBINV_ALL, TLBINV_ALL) #define TLBINV_KERNEL_MAP(op) \ TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL, \ TLBINV_ALLKERNEL, TLBINV_ALL) bool pmap_tlb_shootdown_bystanders(pmap_t pm) { /* * We don't need to deal with our own TLB. */ UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0); const struct cpu_info * const ci = curcpu(); kcpuset_t *pm_active = ci->ci_shootdowncpus; kcpuset_copy(pm_active, pm->pm_active); kcpuset_remove(pm_active, cpu_tlb_info(curcpu())->ti_kcpuset); const bool kernel_p = (pm == pmap_kernel()); bool ipi_sent = false; /* * If pm_active gets more bits set, then it's after all our changes * have been made so they will already be cognizant of them. */ for (size_t i = 0; !kcpuset_iszero(pm_active); i++) { KASSERT(i < pmap_ntlbs); struct pmap_tlb_info * const ti = pmap_tlbs[i]; KASSERT(tlbinfo_index(ti) == i); UVMHIST_LOG(maphist, "ti %#jx", ti, 0, 0, 0); /* * Skip this TLB if there are no active mappings for it. */ if (!kcpuset_intersecting_p(pm_active, ti->ti_kcpuset)) continue; struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); kcpuset_remove(pm_active, ti->ti_kcpuset); TLBINFO_LOCK(ti); cpuid_t j = kcpuset_ffs_intersecting(pm->pm_onproc, ti->ti_kcpuset); // post decrement since ffs returns bit + 1 or 0 if no bit if (j-- > 0) { if (kernel_p) { ti->ti_tlbinvop = TLBINV_KERNEL_MAP(ti->ti_tlbinvop); ti->ti_victim = NULL; } else { KASSERT(pai->pai_asid); if (__predict_false(ti->ti_victim == pm)) { KASSERT(ti->ti_tlbinvop == TLBINV_ONE); /* * We still need to invalidate this one * ASID so there's nothing to change. */ } else { ti->ti_tlbinvop = TLBINV_USER_MAP(ti->ti_tlbinvop); if (ti->ti_tlbinvop == TLBINV_ONE) ti->ti_victim = pm; else ti->ti_victim = NULL; } } UVMHIST_LOG(maphist, "tlbinvop %jx victim %#jx", ti->ti_tlbinvop, (uintptr_t)ti->ti_victim, 0, 0); TLBINFO_UNLOCK(ti); /* * Now we can send out the shootdown IPIs to a CPU * that shares this TLB and is currently using this * pmap. That CPU will process the IPI and do the * all the work. Any other CPUs sharing that TLB * will take advantage of that work. pm_onproc might * change now that we have released the lock but we * can tolerate spurious shootdowns. */ cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN); ipi_sent = true; continue; } if (!pmap_tlb_intersecting_active_p(pm, ti)) { UVMHIST_LOG(maphist, "pm %#jx not active", (uintptr_t)pm, 0, 0, 0); /* * If this pmap has an ASID assigned but it's not * currently running, nuke its ASID. Next time the * pmap is activated, it will allocate a new ASID. * And best of all, we avoid an IPI. */ KASSERT(!kernel_p); pmap_tlb_pai_reset(ti, pai, pm); //ti->ti_evcnt_lazy_shots.ev_count++; } TLBINFO_UNLOCK(ti); } UVMHIST_LOG(maphist, " <-- done (ipi_sent=%jd)", ipi_sent, 0, 0, 0); return ipi_sent; } #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ int pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pte, u_int flags) { struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); int rv = -1; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, " (pm=%#jx va=%#jx, pte=%#jx flags=%#jx)", (uintptr_t)pm, va, pte_value(pte), flags); KASSERT(kpreempt_disabled()); KASSERTMSG(pte_valid_p(pte), "va %#"PRIxVADDR" %#"PRIxPTE, va, pte_value(pte)); TLBINFO_LOCK(ti); if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { pmap_tlb_asid_check(); rv = tlb_update_addr(va, pai->pai_asid, pte, (flags & PMAP_TLB_INSERT) != 0); pmap_tlb_asid_check(); UVMHIST_LOG(maphist, " %jd <-- tlb_update_addr(%#jx, %#jx, %#jx, ...)", rv, va, pai->pai_asid, pte_value(pte)); KASSERTMSG((flags & PMAP_TLB_INSERT) == 0 || rv == 1, "pmap %p (asid %u) va %#"PRIxVADDR" pte %#"PRIxPTE" rv %d", pm, pai->pai_asid, va, pte_value(pte), rv); } #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) if (flags & PMAP_TLB_NEED_IPI) pm->pm_shootdown_pending = 1; #endif TLBINFO_UNLOCK(ti); UVMHIST_LOG(maphist, " <-- done (rv=%jd)", rv, 0, 0, 0); return rv; } void pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va) { struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, " (pm=%#jx va=%#jx) ti=%#jx asid=%#jx", (uintptr_t)pm, va, (uintptr_t)ti, pai->pai_asid); KASSERT(kpreempt_disabled()); TLBINFO_LOCK(ti); if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { pmap_tlb_asid_check(); UVMHIST_LOG(maphist, " invalidating %#jx asid %#jx", va, pai->pai_asid, 0, 0); tlb_invalidate_addr(va, pai->pai_asid); pmap_tlb_asid_check(); } #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) pm->pm_shootdown_pending = 1; #endif TLBINFO_UNLOCK(ti); UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); } static inline void pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm, struct pmap_asid_info *pai) { /* * We shouldn't have an ASID assigned, and thusly must not be onproc * nor active. */ KASSERT(pm != pmap_kernel()); KASSERT(pai->pai_asid == 0); KASSERT(pai->pai_link.le_prev == NULL); #if defined(MULTIPROCESSOR) KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); #endif KASSERT(ti->ti_asids_free > 0); KASSERT(ti->ti_asid_hint > KERNEL_PID); /* * If the last ASID allocated was the maximum ASID, then the * hint will be out of range. Reset the hint to first * available ASID. */ if (PMAP_TLB_FLUSH_ASID_ON_RESET && ti->ti_asid_hint > ti->ti_asid_max) { ti->ti_asid_hint = KERNEL_PID + 1; } KASSERTMSG(ti->ti_asid_hint <= ti->ti_asid_max, "hint %u", ti->ti_asid_hint); /* * Let's see if the hinted ASID is free. If not search for * a new one. */ if (__predict_true(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) { const size_t nbpw = NBBY * sizeof(ti->ti_asid_bitmap._b[0]); size_t i; u_long bits; for (i = 0; (bits = ~ti->ti_asid_bitmap._b[i]) == 0; i++) { KASSERT(i < __arraycount(ti->ti_asid_bitmap._b) - 1); } /* * ffs wants to find the first bit set while we want * to find the first bit cleared. */ const u_int n = __builtin_ffsl(bits) - 1; KASSERTMSG((bits << (nbpw - (n+1))) == (1ul << (nbpw-1)), "n %u bits %#lx", n, bits); KASSERT(n < nbpw); ti->ti_asid_hint = n + i * nbpw; } KASSERT(ti->ti_asid_hint > KERNEL_PID); KASSERT(ti->ti_asid_hint <= ti->ti_asid_max); KASSERTMSG(PMAP_TLB_FLUSH_ASID_ON_RESET || TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint - 1), "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); KASSERTMSG(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint), "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); /* * The hint contains our next ASID so take it and advance the hint. * Mark it as used and insert the pai into the list of active asids. * There is also one less asid free in this TLB. */ pai->pai_asid = ti->ti_asid_hint++; #ifdef MULTIPROCESSOR if (PMAP_TLB_FLUSH_ASID_ON_RESET) { /* * Clean the new ASID from the TLB. */ tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); } #endif TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link); ti->ti_asids_free--; #if defined(MULTIPROCESSOR) /* * Mark that we now have an active ASID for all CPUs sharing this TLB. * The bits in pm_active belonging to this TLB can only be changed * while this TLBs lock is held. */ #if PMAP_TLB_MAX == 1 kcpuset_copy(pm->pm_active, kcpuset_running); #else kcpuset_merge(pm->pm_active, ti->ti_kcpuset); #endif #endif } /* * Acquire a TLB address space tag (called ASID or TLBPID) and return it. * ASID might have already been previously acquired. */ void pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l) { struct cpu_info * const ci = l->l_cpu; struct pmap_tlb_info * const ti = cpu_tlb_info(ci); struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, "(pm=%#jx, l=%#jx, ti=%#jx)", (uintptr_t)pm, (uintptr_t)l, (uintptr_t)ti, 0); KASSERT(kpreempt_disabled()); /* * Kernels use a fixed ASID and thus doesn't need to acquire one. */ if (pm == pmap_kernel()) { UVMHIST_LOG(maphist, " <-- done (kernel)", 0, 0, 0, 0); return; } TLBINFO_LOCK(ti); KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL); KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL); pmap_tlb_pai_check(ti, true); if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) { /* * If we've run out ASIDs, reinitialize the ASID space. */ if (__predict_false(tlbinfo_noasids_p(ti))) { KASSERT(l == curlwp); UVMHIST_LOG(maphist, " asid reinit", 0, 0, 0, 0); pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY); KASSERT(!tlbinfo_noasids_p(ti)); } /* * Get an ASID. */ pmap_tlb_asid_alloc(ti, pm, pai); UVMHIST_LOG(maphist, "allocated asid %#jx", pai->pai_asid, 0, 0, 0); } pmap_tlb_pai_check(ti, true); #if defined(MULTIPROCESSOR) KASSERT(kcpuset_isset(pm->pm_active, cpu_index(ci))); #endif if (l == curlwp) { #if defined(MULTIPROCESSOR) /* * The bits in pm_onproc belonging to this TLB can only * be changed while this TLBs lock is held unless atomic * operations are used. */ KASSERT(pm != pmap_kernel()); kcpuset_atomic_set(pm->pm_onproc, cpu_index(ci)); #endif ci->ci_pmap_asid_cur = pai->pai_asid; UVMHIST_LOG(maphist, "setting asid to %#jx", pai->pai_asid, 0, 0, 0); tlb_set_asid(pai->pai_asid, pm); pmap_tlb_asid_check(); } else { printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp); } TLBINFO_UNLOCK(ti); UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); } void pmap_tlb_asid_deactivate(pmap_t pm) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0); KASSERT(kpreempt_disabled()); #if defined(MULTIPROCESSOR) /* * The kernel pmap is aways onproc and active and must never have * those bits cleared. If pmap_remove_all was called, it has already * deactivated the pmap and thusly onproc will be 0 so there's nothing * to do. */ if (pm != pmap_kernel() && !kcpuset_iszero(pm->pm_onproc)) { struct cpu_info * const ci = curcpu(); KASSERT(!cpu_intr_p()); KASSERTMSG(kcpuset_isset(pm->pm_onproc, cpu_index(ci)), "%s: pmap %p onproc %p doesn't include cpu %d (%p)", __func__, pm, pm->pm_onproc, cpu_index(ci), ci); /* * The bits in pm_onproc that belong to this TLB can * be changed while this TLBs lock is not held as long * as we use atomic ops. */ kcpuset_atomic_clear(pm->pm_onproc, cpu_index(ci)); } #endif curcpu()->ci_pmap_asid_cur = KERNEL_PID; tlb_set_asid(KERNEL_PID, pmap_kernel()); pmap_tlb_pai_check(cpu_tlb_info(curcpu()), false); #if defined(DEBUG) pmap_tlb_asid_check(); #endif UVMHIST_LOG(maphist, " <-- done (pm=%#jx)", (uintptr_t)pm, 0, 0, 0); } void pmap_tlb_asid_release_all(struct pmap *pm) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0); KASSERT(pm != pmap_kernel()); #if defined(MULTIPROCESSOR) //KASSERT(!kcpuset_iszero(pm->pm_onproc)); // XXX struct cpu_info * const ci __diagused = curcpu(); KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci))); #if PMAP_TLB_MAX > 1 for (u_int i = 0; !kcpuset_iszero(pm->pm_active); i++) { KASSERT(i < pmap_ntlbs); struct pmap_tlb_info * const ti = pmap_tlbs[i]; #else struct pmap_tlb_info * const ti = &pmap_tlb0_info; #endif struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); TLBINFO_LOCK(ti); if (PMAP_PAI_ASIDVALID_P(pai, ti)) { /* * This pmap should not be in use by any other cpu so * we can just reset and be happy. */ if (ti->ti_victim == pm) ti->ti_victim = NULL; pmap_tlb_pai_reset(ti, pai, pm); } KASSERT(pai->pai_link.le_prev == NULL); TLBINFO_UNLOCK(ti); #if PMAP_TLB_MAX > 1 } #endif #ifdef DIAGNOSTIC for (size_t i = 0; i < (PMAP_TLB_MAX > 1 ? pmap_ntlbs : 1); i++) { KASSERTMSG(pm->pm_pai[i].pai_asid == 0, "pm %p i %zu asid %u", pm, i, pm->pm_pai[i].pai_asid); } #endif #else /* * Handle the case of an UP kernel which only has, at most, one TLB. * If the pmap has an ASID allocated, free it. */ struct pmap_tlb_info * const ti = &pmap_tlb0_info; struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); TLBINFO_LOCK(ti); if (pai->pai_asid > KERNEL_PID) { if (curcpu()->ci_pmap_asid_cur == pai->pai_asid) { tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); } else { pmap_tlb_pai_reset(ti, pai, pm); } } TLBINFO_UNLOCK(ti); #endif /* MULTIPROCESSOR */ UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); } void pmap_tlb_asid_check(void) { UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); #ifdef DEBUG kpreempt_disable(); const tlb_asid_t asid __debugused = tlb_get_asid(); UVMHIST_LOG(maphist, " asid %u vs pmap_cur_asid %u", asid, curcpu()->ci_pmap_asid_cur, 0, 0); KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur, "%s: asid (%#x) != current asid (%#x)", __func__, asid, curcpu()->ci_pmap_asid_cur); kpreempt_enable(); #endif UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); } #ifdef DEBUG void pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t)) { struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); TLBINFO_LOCK(ti); if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID) tlb_walk(pm, func); TLBINFO_UNLOCK(ti); } #endif /* DEBUG */ #ifdef DDB void pmap_db_tlb_print(struct pmap *pm, void (*pr)(const char *, ...) __printflike(1, 2)) { #if PMAP_TLB_MAX == 1 pr(" asid %5u\n", pm->pm_pai[0].pai_asid); #else for (size_t i = 0; i < (PMAP_TLB_MAX > 1 ? pmap_ntlbs : 1); i++) { pr(" tlb %zu asid %5u\n", i, pm->pm_pai[i].pai_asid); } #endif } #endif /* DDB */