/* $NetBSD: anx_dp.c,v 1.5 2021/12/19 12:43:37 riastradh Exp $ */ /*- * Copyright (c) 2019 Jonathan A. Kollasch <jakllsch@kollasch.net> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: anx_dp.c,v 1.5 2021/12/19 12:43:37 riastradh Exp $"); #include <sys/param.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/device.h> #include <sys/intr.h> #include <sys/kernel.h> #include <sys/systm.h> #include <dev/ic/anx_dp.h> #if ANXDP_AUDIO #include <dev/audio/audio_dai.h> #endif #include <drm/drm_atomic_state_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_dp_helper.h> #include <drm/drm_drv.h> #include <drm/drm_edid.h> #define ANXDP_DP_TX_VERSION 0x010 #define ANXDP_TX_SW_RESET 0x014 #define RESET_DP_TX __BIT(0) #define ANXDP_FUNC_EN_1 0x018 #define MASTER_VID_FUNC_EN_N __BIT(7) #define RK_VID_CAP_FUNC_EN_N __BIT(6) #define SLAVE_VID_FUNC_EN_N __BIT(5) #define RK_VID_FIFO_FUNC_EN_N __BIT(5) #define AUD_FIFO_FUNC_EN_N __BIT(4) #define AUD_FUNC_EN_N __BIT(3) #define HDCP_FUNC_EN_N __BIT(2) #define CRC_FUNC_EN_N __BIT(1) #define SW_FUNC_EN_N __BIT(0) #define ANXDP_FUNC_EN_2 0x01c #define SSC_FUNC_EN_N __BIT(7) #define AUX_FUNC_EN_N __BIT(2) #define SERDES_FIFO_FUNC_EN_N __BIT(1) #define LS_CLK_DOMAIN_FUNC_EN_N __BIT(0) #define ANXDP_VIDEO_CTL_1 0x020 #define VIDEO_EN __BIT(7) #define VIDEO_MUTE __BIT(6) #define ANXDP_VIDEO_CTL_2 0x024 #define ANXDP_VIDEO_CTL_3 0x028 #define ANXDP_VIDEO_CTL_4 0x02c #define ANXDP_VIDEO_CTL_8 0x03c #define ANXDP_VIDEO_CTL_10 0x044 #define F_SEL __BIT(4) #define SLAVE_I_SCAN_CFG __BIT(2) #define SLAVE_VSYNC_P_CFG __BIT(1) #define SLAVE_HSYNC_P_CFG __BIT(0) #define ANXDP_PLL_REG_1 0x0fc #define REF_CLK_24M __BIT(0) #define RKANXDP_PD 0x12c #define DP_INC_BG __BIT(7) #define DP_EXP_PD __BIT(6) #define DP_PHY_PD __BIT(5) #define RK_AUX_PD __BIT(5) #define AUX_PD __BIT(4) #define RK_PLL_PD __BIT(4) #define CHx_PD(x) __BIT(x) /* 0<=x<=3 */ #define DP_ALL_PD __BITS(7,0) #define ANXDP_LANE_MAP 0x35c #define ANXDP_ANALOG_CTL_1 0x370 #define TX_TERMINAL_CTRL_50_OHM __BIT(4) #define ANXDP_ANALOG_CTL_2 0x374 #define SEL_24M __BIT(3) #define TX_DVDD_BIT_1_0625V 0x4 #define ANXDP_ANALOG_CTL_3 0x378 #define DRIVE_DVDD_BIT_1_0625V (0x4 << 5) #define VCO_BIT_600_MICRO (0x5 << 0) #define ANXDP_PLL_FILTER_CTL_1 0x37c #define PD_RING_OSC __BIT(6) #define AUX_TERMINAL_CTRL_50_OHM (2 << 4) #define TX_CUR1_2X __BIT(2) #define TX_CUR_16_MA 3 #define ANXDP_TX_AMP_TUNING_CTL 0x380 #define ANXDP_AUX_HW_RETRY_CTL 0x390 #define AUX_BIT_PERIOD_EXPECTED_DELAY(x) __SHIFTIN((x), __BITS(10,8)) #define AUX_HW_RETRY_INTERVAL_600_US __SHIFTIN(0, __BITS(4,3)) #define AUX_HW_RETRY_INTERVAL_800_US __SHIFTIN(1, __BITS(4,3)) #define AUX_HW_RETRY_INTERVAL_1000_US __SHIFTIN(2, __BITS(4,3)) #define AUX_HW_RETRY_INTERVAL_1800_US __SHIFTIN(3, __BITS(4,3)) #define AUX_HW_RETRY_COUNT_SEL(x) __SHIFTIN((x), __BITS(2,0)) #define ANXDP_COMMON_INT_STA_1 0x3c4 #define PLL_LOCK_CHG __BIT(6) #define ANXDP_COMMON_INT_STA_2 0x3c8 #define ANXDP_COMMON_INT_STA_3 0x3cc #define ANXDP_COMMON_INT_STA_4 0x3d0 #define ANXDP_DP_INT_STA 0x3dc #define INT_HPD __BIT(6) #define HW_TRAINING_FINISH __BIT(5) #define RPLY_RECEIV __BIT(1) #define AUX_ERR __BIT(0) #define ANXDP_SYS_CTL_1 0x600 #define DET_STA __BIT(2) #define FORCE_DET __BIT(1) #define DET_CTRL __BIT(0) #define ANXDP_SYS_CTL_2 0x604 #define ANXDP_SYS_CTL_3 0x608 #define HPD_STATUS __BIT(6) #define F_HPD __BIT(5) #define HPD_CTRL __BIT(4) #define HDCP_RDY __BIT(3) #define STRM_VALID __BIT(2) #define F_VALID __BIT(1) #define VALID_CTRL __BIT(0) #define ANXDP_SYS_CTL_4 0x60c #define ANXDP_PKT_SEND_CTL 0x640 #define ANXDP_HDCP_CTL 0x648 #define ANXDP_LINK_BW_SET 0x680 #define ANXDP_LANE_COUNT_SET 0x684 #define ANXDP_TRAINING_PTN_SET 0x688 #define SCRAMBLING_DISABLE __BIT(5) #define SW_TRAINING_PATTERN_SET_PTN2 __SHIFTIN(2, __BITS(1,0)) #define SW_TRAINING_PATTERN_SET_PTN1 __SHIFTIN(1, __BITS(1,0)) #define ANXDP_LNx_LINK_TRAINING_CTL(x) (0x68c + 4 * (x)) /* 0 <= x <= 3 */ #define MAX_PRE_REACH __BIT(5) #define PRE_EMPHASIS_SET(x) __SHIFTIN((x), __BITS(4,3)) #define MAX_DRIVE_REACH __BIT(2) #define DRIVE_CURRENT_SET(x) __SHIFTIN((x), __BITS(1,0)) #define ANXDP_DEBUG_CTL 0x6c0 #define PLL_LOCK __BIT(4) #define F_PLL_LOCK __BIT(3) #define PLL_LOCK_CTRL __BIT(2) #define PN_INV __BIT(0) #define ANXDP_LINK_DEBUG_CTL 0x6e0 #define ANXDP_PLL_CTL 0x71c #define ANXDP_PHY_PD 0x720 #define ANXDP_PHY_TEST 0x724 #define MACRO_RST __BIT(5) #define ANXDP_M_AUD_GEN_FILTER_TH 0x778 #define ANXDP_AUX_CH_STA 0x780 #define AUX_BUSY __BIT(4) #define AUX_STATUS(x) __SHIFTOUT((x), __BITS(3,0)) #define ANXDP_AUX_ERR_NUM 0x784 #define ANXDP_AUX_CH_DEFER_CTL 0x788 #define DEFER_CTRL_EN __BIT(7) #define DEFER_COUNT(x) __SHIFTIN((x), __BITS(6,0)) #define ANXDP_AUX_RX_COMM 0x78c #define AUX_RX_COMM_I2C_DEFER __BIT(3) #define AUX_RX_COMM_AUX_DEFER __BIT(1) #define ANXDP_BUFFER_DATA_CTL 0x790 #define BUF_CLR __BIT(7) #define BUF_DATA_COUNT(x) __SHIFTIN((x), __BITS(4,0)) #define ANXDP_AUX_CH_CTL_1 0x794 #define AUX_LENGTH(x) __SHIFTIN((x) - 1, __BITS(7,4)) #define AUX_TX_COMM(x) __SHIFTOUT(x, __BITS(3,0)) #define AUX_TX_COMM_DP __BIT(3) #define AUX_TX_COMM_MOT __BIT(2) #define AUX_TX_COMM_READ __BIT(0) #define ANXDP_AUX_ADDR_7_0 0x798 #define AUX_ADDR_7_0(x) (((x) >> 0) & 0xff) #define ANXDP_AUX_ADDR_15_8 0x79c #define AUX_ADDR_15_8(x) (((x) >> 8) & 0xff) #define ANXDP_AUX_ADDR_19_16 0x7a0 #define AUX_ADDR_19_16(x) (((x) >> 16) & 0xf) #define ANXDP_AUX_CH_CTL_2 0x7a4 #define ADDR_ONLY __BIT(1) #define AUX_EN __BIT(0) #define ANXDP_BUF_DATA(x) (0x7c0 + 4 * (x)) #define ANXDP_SOC_GENERAL_CTL 0x800 #define AUDIO_MODE_SPDIF_MODE __BIT(8) #define VIDEO_MODE_SLAVE_MODE __BIT(1) #define ANXDP_CRC_CON 0x890 #define ANXDP_PLL_REG_2 0x9e4 #define ANXDP_PLL_REG_3 0x9e8 #define ANXDP_PLL_REG_4 0x9ec #define ANXDP_PLL_REG_5 0xa00 struct anxdp_link { uint8_t revision; u_int rate; u_int num_lanes; bool enhanced_framing; }; #if ANXDP_AUDIO enum anxdp_dai_mixer_ctrl { ANXDP_DAI_OUTPUT_CLASS, ANXDP_DAI_INPUT_CLASS, ANXDP_DAI_OUTPUT_MASTER_VOLUME, ANXDP_DAI_INPUT_DAC_VOLUME, ANXDP_DAI_MIXER_CTRL_LAST }; static void anxdp_audio_init(struct anxdp_softc *sc) { } #endif static inline const bool isrockchip(struct anxdp_softc * const sc) { return (sc->sc_flags & ANXDP_FLAG_ROCKCHIP) != 0; } static enum drm_connector_status anxdp_connector_detect(struct drm_connector *connector, bool force) { #if 0 struct anxdp_connector *anxdp_connector = to_anxdp_connector(connector); struct anxdp_softc * const sc = anxdp_connector->sc; /* XXX HPD */ #endif return connector_status_connected; } static void anxdp_connector_destroy(struct drm_connector *connector) { drm_connector_unregister(connector); drm_connector_cleanup(connector); } static const struct drm_connector_funcs anxdp_connector_funcs = { .dpms = drm_helper_connector_dpms, .detect = anxdp_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = anxdp_connector_destroy, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static void anxdp_analog_power_up_all(struct anxdp_softc * const sc) { const bus_size_t pd_reg = isrockchip(sc) ? RKANXDP_PD : ANXDP_PHY_PD; bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, DP_ALL_PD); delay(15); bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, DP_ALL_PD & ~DP_INC_BG); delay(15); bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, 0); } static int anxdp_await_pll_lock(struct anxdp_softc * const sc) { u_int timeout; for (timeout = 0; timeout < 100; timeout++) { if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DEBUG_CTL) & PLL_LOCK) != 0) return 0; delay(20); } return ETIMEDOUT; } static void anxdp_init_hpd(struct anxdp_softc * const sc) { uint32_t sc3; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_COMMON_INT_STA_4, 0x7); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA, INT_HPD); sc3 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3); sc3 &= ~(F_HPD | HPD_CTRL); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3, sc3); sc3 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3); sc3 |= F_HPD | HPD_CTRL; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3, sc3); } static void anxdp_init_aux(struct anxdp_softc * const sc) { uint32_t fe2, pd, hrc; const bus_size_t pd_reg = isrockchip(sc) ? RKANXDP_PD : ANXDP_PHY_PD; const uint32_t pd_mask = isrockchip(sc) ? RK_AUX_PD : AUX_PD; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA, RPLY_RECEIV | AUX_ERR); pd = bus_space_read_4(sc->sc_bst, sc->sc_bsh, pd_reg); pd |= pd_mask; bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, pd); delay(11); pd = bus_space_read_4(sc->sc_bst, sc->sc_bsh, pd_reg); pd &= ~pd_mask; bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, pd); fe2 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2); fe2 |= AUX_FUNC_EN_N; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2, fe2); hrc = AUX_HW_RETRY_COUNT_SEL(0) | AUX_HW_RETRY_INTERVAL_600_US; if (!isrockchip(sc)) hrc |= AUX_BIT_PERIOD_EXPECTED_DELAY(3); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_HW_RETRY_CTL, hrc); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_DEFER_CTL, DEFER_CTRL_EN | DEFER_COUNT(1)); fe2 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2); fe2 &= ~AUX_FUNC_EN_N; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2, fe2); } static int anxdp_connector_get_modes(struct drm_connector *connector) { struct anxdp_connector *anxdp_connector = to_anxdp_connector(connector); struct anxdp_softc * const sc = anxdp_connector->sc; struct edid *pedid = NULL; int error; pedid = drm_get_edid(connector, &sc->sc_dpaux.ddc); #if ANXDP_AUDIO if (pedid) { anxdp_connector->monitor_audio = drm_detect_monitor_audio(pedid); } else { anxdp_connector->monitor_audio = false; } #endif drm_connector_update_edid_property(connector, pedid); if (pedid == NULL) return 0; error = drm_add_edid_modes(connector, pedid); if (pedid != NULL) kfree(pedid); return error; } static struct drm_encoder * anxdp_connector_best_encoder(struct drm_connector *connector) { struct anxdp_connector *anxdp_connector = to_anxdp_connector(connector); return anxdp_connector->encoder; } static const struct drm_connector_helper_funcs anxdp_connector_helper_funcs = { .get_modes = anxdp_connector_get_modes, .best_encoder = anxdp_connector_best_encoder, }; static int anxdp_bridge_attach(struct drm_bridge *bridge) { struct anxdp_softc * const sc = bridge->driver_private; struct anxdp_connector *anxdp_connector = &sc->sc_connector; struct drm_connector *connector = &anxdp_connector->base; int error; anxdp_connector->sc = sc; connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; connector->interlace_allowed = 0; connector->doublescan_allowed = 0; drm_connector_init(bridge->dev, connector, &anxdp_connector_funcs, connector->connector_type); drm_connector_helper_add(connector, &anxdp_connector_helper_funcs); error = drm_connector_attach_encoder(connector, bridge->encoder); if (error) return error; return drm_connector_register(connector); } static void anxdp_macro_reset(struct anxdp_softc * const sc) { uint32_t val; val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_PHY_TEST); val |= MACRO_RST; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PHY_TEST, val); delay(10); val &= ~MACRO_RST; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PHY_TEST, val); } static void anxdp_link_start(struct anxdp_softc * const sc, struct anxdp_link * const link) { uint8_t training[4]; uint8_t bw[2]; uint32_t val; int ret; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_LINK_BW_SET, drm_dp_link_rate_to_bw_code(link->rate)); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_LANE_COUNT_SET, link->num_lanes); bw[0] = drm_dp_link_rate_to_bw_code(link->rate); bw[1] = link->num_lanes; if (link->enhanced_framing) bw[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; ret = drm_dp_dpcd_write(&sc->sc_dpaux, DP_LINK_BW_SET, bw, sizeof(bw)); if (ret < 0) return; for (u_int i = 0; i < link->num_lanes; i++) { val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_LNx_LINK_TRAINING_CTL(i)); val &= ~(PRE_EMPHASIS_SET(3)|DRIVE_CURRENT_SET(3)); val |= PRE_EMPHASIS_SET(0); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_LNx_LINK_TRAINING_CTL(i), val); } if (anxdp_await_pll_lock(sc) != 0) { device_printf(sc->sc_dev, "PLL lock timeout\n"); } for (u_int i = 0; i < link->num_lanes; i++) { training[i] = DP_TRAIN_PRE_EMPH_LEVEL_0 | DP_TRAIN_VOLTAGE_SWING_LEVEL_0; } drm_dp_dpcd_write(&sc->sc_dpaux, DP_TRAINING_LANE0_SET, training, link->num_lanes); } static void anxdp_process_clock_recovery(struct anxdp_softc * const sc, struct anxdp_link * const link) { u_int i, tries; uint8_t link_status[DP_LINK_STATUS_SIZE]; uint8_t training[4]; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TRAINING_PTN_SET, SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN1); drm_dp_dpcd_writeb(&sc->sc_dpaux, DP_TRAINING_PATTERN_SET, DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_1); tries = 0; again: if (tries++ >= 10) { device_printf(sc->sc_dev, "cr fail\n"); return; } drm_dp_link_train_clock_recovery_delay(sc->sc_dpcd); if (DP_LINK_STATUS_SIZE != drm_dp_dpcd_read_link_status(&sc->sc_dpaux, link_status)) { return; } if (!drm_dp_clock_recovery_ok(link_status, link->num_lanes)) { goto cr_fail; } return; cr_fail: for (i = 0; i < link->num_lanes; i++) { uint8_t vs, pe; vs = drm_dp_get_adjust_request_voltage(link_status, i); pe = drm_dp_get_adjust_request_pre_emphasis(link_status, i); training[i] = vs | pe; } for (i = 0; i < link->num_lanes; i++) { bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_LNx_LINK_TRAINING_CTL(i), training[i]); } drm_dp_dpcd_write(&sc->sc_dpaux, DP_TRAINING_LANE0_SET, training, link->num_lanes); goto again; } static void anxdp_process_eq(struct anxdp_softc * const sc, struct anxdp_link * const link) { u_int i, tries; uint8_t link_status[DP_LINK_STATUS_SIZE]; uint8_t training[4]; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TRAINING_PTN_SET, SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN2); drm_dp_dpcd_writeb(&sc->sc_dpaux, DP_TRAINING_PATTERN_SET, DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2); tries = 0; again: if (tries++ >= 10) { device_printf(sc->sc_dev, "eq fail\n"); return; } drm_dp_link_train_channel_eq_delay(sc->sc_dpcd); if (DP_LINK_STATUS_SIZE != drm_dp_dpcd_read_link_status(&sc->sc_dpaux, link_status)) { return; } if (!drm_dp_channel_eq_ok(link_status, link->num_lanes)) { goto eq_fail; } return; eq_fail: for (i = 0; i < link->num_lanes; i++) { uint8_t vs, pe; vs = drm_dp_get_adjust_request_voltage(link_status, i); pe = drm_dp_get_adjust_request_pre_emphasis(link_status, i); training[i] = vs | pe; } for (i = 0; i < link->num_lanes; i++) { bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_LNx_LINK_TRAINING_CTL(i), training[i]); } drm_dp_dpcd_write(&sc->sc_dpaux, DP_TRAINING_LANE0_SET, training, link->num_lanes); goto again; } static void anxdp_train_link(struct anxdp_softc * const sc) { struct anxdp_link link; uint8_t values[3], power; int ret; anxdp_macro_reset(sc); ret = drm_dp_dpcd_read(&sc->sc_dpaux, DP_DPCD_REV, values, sizeof(values)); if (ret < 0) { device_printf(sc->sc_dev, "link probe failed\n"); return; } memset(&link, 0, sizeof(link)); link.revision = values[0]; link.rate = drm_dp_bw_code_to_link_rate(values[1]); link.num_lanes = values[2] & DP_MAX_LANE_COUNT_MASK; if (values[2] & DP_ENHANCED_FRAME_CAP) link.enhanced_framing = true; if (link.revision >= 0x11) { if (drm_dp_dpcd_readb(&sc->sc_dpaux, DP_SET_POWER, &power) < 0) return; power &= ~DP_SET_POWER_MASK; power |= DP_SET_POWER_D0; if (drm_dp_dpcd_writeb(&sc->sc_dpaux, DP_SET_POWER, power) < 0) return; delay(2000); } if (DP_RECEIVER_CAP_SIZE != drm_dp_dpcd_read(&sc->sc_dpaux, DP_DPCD_REV, sc->sc_dpcd, DP_RECEIVER_CAP_SIZE)) return; anxdp_link_start(sc, &link); anxdp_process_clock_recovery(sc, &link); anxdp_process_eq(sc, &link); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TRAINING_PTN_SET, 0); drm_dp_dpcd_writeb(&sc->sc_dpaux, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); } static void anxdp_bringup(struct anxdp_softc * const sc) { uint32_t val; val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1); val &= ~VIDEO_EN; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1, val); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1); val &= ~VIDEO_MUTE; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1, val); val = SW_FUNC_EN_N; if (isrockchip(sc)) { val |= RK_VID_CAP_FUNC_EN_N | RK_VID_FIFO_FUNC_EN_N; } else { val |= MASTER_VID_FUNC_EN_N | SLAVE_VID_FUNC_EN_N | AUD_FIFO_FUNC_EN_N | AUD_FUNC_EN_N | HDCP_FUNC_EN_N; } bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1, val); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2, SSC_FUNC_EN_N | AUX_FUNC_EN_N | SERDES_FIFO_FUNC_EN_N | LS_CLK_DOMAIN_FUNC_EN_N); delay(30); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_M_AUD_GEN_FILTER_TH, 2); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SOC_GENERAL_CTL, 0x101); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TX_SW_RESET, RESET_DP_TX); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_ANALOG_CTL_1, TX_TERMINAL_CTRL_50_OHM); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_ANALOG_CTL_2, SEL_24M | TX_DVDD_BIT_1_0625V); if (isrockchip(sc)) { bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_1, REF_CLK_24M); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_2, 0x95); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_3, 0x40); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_4, 0x58); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_5, 0x22); } bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_ANALOG_CTL_3, DRIVE_DVDD_BIT_1_0625V | VCO_BIT_600_MICRO); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_FILTER_CTL_1, PD_RING_OSC | AUX_TERMINAL_CTRL_50_OHM | TX_CUR1_2X | TX_CUR_16_MA); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TX_AMP_TUNING_CTL, 0); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1); val &= ~SW_FUNC_EN_N; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1, val); anxdp_analog_power_up_all(sc); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_COMMON_INT_STA_1, PLL_LOCK_CHG); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DEBUG_CTL); val &= ~(F_PLL_LOCK | PLL_LOCK_CTRL); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DEBUG_CTL, val); if (anxdp_await_pll_lock(sc) != 0) { device_printf(sc->sc_dev, "PLL lock timeout\n"); } val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2); val &= ~(SERDES_FIFO_FUNC_EN_N | LS_CLK_DOMAIN_FUNC_EN_N | AUX_FUNC_EN_N); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2, val); anxdp_init_hpd(sc); anxdp_init_aux(sc); } static void anxdp_bridge_enable(struct drm_bridge *bridge) { struct anxdp_softc * const sc = bridge->driver_private; uint32_t val; val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1); if (isrockchip(sc)) { val &= ~(RK_VID_CAP_FUNC_EN_N | RK_VID_FIFO_FUNC_EN_N); } else { val &= ~(MASTER_VID_FUNC_EN_N | SLAVE_VID_FUNC_EN_N); val |= MASTER_VID_FUNC_EN_N; } bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1, val); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_10); val &= ~(SLAVE_I_SCAN_CFG|SLAVE_VSYNC_P_CFG|SLAVE_HSYNC_P_CFG); if ((sc->sc_curmode.flags & DRM_MODE_FLAG_INTERLACE) != 0) val |= SLAVE_I_SCAN_CFG; if ((sc->sc_curmode.flags & DRM_MODE_FLAG_NVSYNC) != 0) val |= SLAVE_VSYNC_P_CFG; if ((sc->sc_curmode.flags & DRM_MODE_FLAG_NHSYNC) != 0) val |= SLAVE_HSYNC_P_CFG; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_10, val); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SOC_GENERAL_CTL, AUDIO_MODE_SPDIF_MODE | VIDEO_MODE_SLAVE_MODE); anxdp_train_link(sc); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1); val |= VIDEO_EN; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1, val); if (sc->sc_panel != NULL && sc->sc_panel->funcs != NULL && sc->sc_panel->funcs->enable != NULL) sc->sc_panel->funcs->enable(sc->sc_panel); #if ANXDP_AUDIO if (sc->sc_connector.monitor_audio) anxdp_audio_init(sc); #endif } static void anxdp_bridge_pre_enable(struct drm_bridge *bridge) { } static void anxdp_bridge_disable(struct drm_bridge *bridge) { } static void anxdp_bridge_post_disable(struct drm_bridge *bridge) { } static void anxdp_bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct anxdp_softc * const sc = bridge->driver_private; sc->sc_curmode = *adjusted_mode; } static bool anxdp_bridge_mode_fixup(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static const struct drm_bridge_funcs anxdp_bridge_funcs = { .attach = anxdp_bridge_attach, .enable = anxdp_bridge_enable, .pre_enable = anxdp_bridge_pre_enable, .disable = anxdp_bridge_disable, .post_disable = anxdp_bridge_post_disable, .mode_set = anxdp_bridge_mode_set, .mode_fixup = anxdp_bridge_mode_fixup, }; #if ANXDP_AUDIO static int anxdp_dai_set_format(audio_dai_tag_t dai, u_int format) { return 0; } static int anxdp_dai_add_device(audio_dai_tag_t dai, audio_dai_tag_t aux) { /* Not supported */ return 0; } static void anxdp_audio_swvol_codec(audio_filter_arg_t *arg) { struct anxdp_softc * const sc = arg->context; const aint_t *src; aint_t *dst; u_int sample_count; u_int i; src = arg->src; dst = arg->dst; sample_count = arg->count * arg->srcfmt->channels; for (i = 0; i < sample_count; i++) { aint2_t v = (aint2_t)(*src++); v = v * sc->sc_swvol / 255; *dst++ = (aint_t)v; } } static int anxdp_audio_set_format(void *priv, int setmode, const audio_params_t *play, const audio_params_t *rec, audio_filter_reg_t *pfil, audio_filter_reg_t *rfil) { struct anxdp_softc * const sc = priv; pfil->codec = anxdp_audio_swvol_codec; pfil->context = sc; return 0; } static int anxdp_audio_set_port(void *priv, mixer_ctrl_t *mc) { struct anxdp_softc * const sc = priv; switch (mc->dev) { case ANXDP_DAI_OUTPUT_MASTER_VOLUME: case ANXDP_DAI_INPUT_DAC_VOLUME: sc->sc_swvol = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; return 0; default: return ENXIO; } } static int anxdp_audio_get_port(void *priv, mixer_ctrl_t *mc) { struct anxdp_softc * const sc = priv; switch (mc->dev) { case ANXDP_DAI_OUTPUT_MASTER_VOLUME: case ANXDP_DAI_INPUT_DAC_VOLUME: mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_swvol; mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_swvol; return 0; default: return ENXIO; } } static int anxdp_audio_query_devinfo(void *priv, mixer_devinfo_t *di) { switch (di->index) { case ANXDP_DAI_OUTPUT_CLASS: di->mixer_class = di->index; strcpy(di->label.name, AudioCoutputs); di->type = AUDIO_MIXER_CLASS; di->next = di->prev = AUDIO_MIXER_LAST; return 0; case ANXDP_DAI_INPUT_CLASS: di->mixer_class = di->index; strcpy(di->label.name, AudioCinputs); di->type = AUDIO_MIXER_CLASS; di->next = di->prev = AUDIO_MIXER_LAST; return 0; case ANXDP_DAI_OUTPUT_MASTER_VOLUME: di->mixer_class = ANXDP_DAI_OUTPUT_CLASS; strcpy(di->label.name, AudioNmaster); di->un.v.delta = 1; di->un.v.num_channels = 2; strcpy(di->un.v.units.name, AudioNvolume); di->type = AUDIO_MIXER_VALUE; di->next = di->prev = AUDIO_MIXER_LAST; return 0; case ANXDP_DAI_INPUT_DAC_VOLUME: di->mixer_class = ANXDP_DAI_INPUT_CLASS; strcpy(di->label.name, AudioNdac); di->un.v.delta = 1; di->un.v.num_channels = 2; strcpy(di->un.v.units.name, AudioNvolume); di->type = AUDIO_MIXER_VALUE; di->next = di->prev = AUDIO_MIXER_LAST; return 0; default: return ENXIO; } } static const struct audio_hw_if anxdp_dai_hw_if = { .set_format = anxdp_audio_set_format, .set_port = anxdp_audio_set_port, .get_port = anxdp_audio_get_port, .query_devinfo = anxdp_audio_query_devinfo, }; #endif static ssize_t anxdp_dp_aux_transfer(struct drm_dp_aux *dpaux, struct drm_dp_aux_msg *dpmsg) { struct anxdp_softc * const sc = container_of(dpaux, struct anxdp_softc, sc_dpaux); size_t loop_timeout = 0; uint32_t val; size_t i; ssize_t ret = 0; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_BUFFER_DATA_CTL, BUF_CLR); val = AUX_LENGTH(dpmsg->size); if ((dpmsg->request & DP_AUX_I2C_MOT) != 0) val |= AUX_TX_COMM_MOT; switch (dpmsg->request & ~DP_AUX_I2C_MOT) { case DP_AUX_I2C_WRITE: break; case DP_AUX_I2C_READ: val |= AUX_TX_COMM_READ; break; case DP_AUX_NATIVE_WRITE: val |= AUX_TX_COMM_DP; break; case DP_AUX_NATIVE_READ: val |= AUX_TX_COMM_READ | AUX_TX_COMM_DP; break; } bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_CTL_1, val); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_ADDR_7_0, AUX_ADDR_7_0(dpmsg->address)); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_ADDR_15_8, AUX_ADDR_15_8(dpmsg->address)); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_ADDR_19_16, AUX_ADDR_19_16(dpmsg->address)); if (!(dpmsg->request & DP_AUX_I2C_READ)) { for (i = 0; i < dpmsg->size; i++) { bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_BUF_DATA(i), ((const uint8_t *)(dpmsg->buffer))[i]); ret++; } } bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_CTL_2, AUX_EN | ((dpmsg->size == 0) ? ADDR_ONLY : 0)); loop_timeout = 0; val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_CTL_2); while ((val & AUX_EN) != 0) { if (++loop_timeout > 20000) { ret = -ETIMEDOUT; goto out; } delay(25); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_CTL_2); } loop_timeout = 0; val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA); while (!(val & RPLY_RECEIV)) { if (++loop_timeout > 2000) { ret = -ETIMEDOUT; goto out; } delay(10); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA); } bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA, RPLY_RECEIV); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA); if ((val & AUX_ERR) != 0) { bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA, AUX_ERR); ret = -EREMOTEIO; goto out; } val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_STA); if (AUX_STATUS(val) != 0) { ret = -EREMOTEIO; goto out; } if ((dpmsg->request & DP_AUX_I2C_READ)) { for (i = 0; i < dpmsg->size; i++) { val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_BUF_DATA(i)); ((uint8_t *)(dpmsg->buffer))[i] = val & 0xffU; ret++; } } val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_RX_COMM); if (val == AUX_RX_COMM_AUX_DEFER) dpmsg->reply = DP_AUX_NATIVE_REPLY_DEFER; else if (val == AUX_RX_COMM_I2C_DEFER) dpmsg->reply = DP_AUX_I2C_REPLY_DEFER; else if ((dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE || (dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_READ) dpmsg->reply = DP_AUX_I2C_REPLY_ACK; else if ((dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE || (dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_READ) dpmsg->reply = DP_AUX_NATIVE_REPLY_ACK; out: if (ret < 0) anxdp_init_aux(sc); return ret; } int anxdp_attach(struct anxdp_softc *sc) { #if ANXDP_AUDIO sc->sc_swvol = 255; /* * Initialize audio DAI */ sc->sc_dai.dai_set_format = anxdp_dai_set_format; sc->sc_dai.dai_add_device = anxdp_dai_add_device; sc->sc_dai.dai_hw_if = &anxdp_dai_hw_if; sc->sc_dai.dai_dev = sc->sc_dev; sc->sc_dai.dai_priv = sc; #endif sc->sc_dpaux.name = "DP Aux"; sc->sc_dpaux.transfer = anxdp_dp_aux_transfer; sc->sc_dpaux.dev = sc->sc_dev; if (drm_dp_aux_register(&sc->sc_dpaux) != 0) { device_printf(sc->sc_dev, "registering DP Aux failed\n"); } anxdp_bringup(sc); return 0; } int anxdp_bind(struct anxdp_softc *sc, struct drm_encoder *encoder) { int error; sc->sc_connector.encoder = encoder; sc->sc_bridge.driver_private = sc; sc->sc_bridge.funcs = &anxdp_bridge_funcs; error = drm_bridge_attach(encoder, &sc->sc_bridge, NULL); if (error) return EIO; if (sc->sc_panel != NULL && sc->sc_panel->funcs != NULL && sc->sc_panel->funcs->prepare != NULL) sc->sc_panel->funcs->prepare(sc->sc_panel); return 0; } void anxdp0_dump(void); void anxdp0_dump(void) { extern struct cfdriver anxdp_cd; struct anxdp_softc * const sc = device_lookup_private(&anxdp_cd, 0); size_t i; if (sc == NULL) return; bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_1, bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_1)); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_2, bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_2)); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3, bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3)); for (i = 0x000; i < 0xb00; i += 4) device_printf(sc->sc_dev, "%03zx 0x%08x\n", i, bus_space_read_4(sc->sc_bst, sc->sc_bsh, i)); }