/* $NetBSD: pmap.h,v 1.173.4.1 2023/10/14 06:52:17 martin Exp $ */ /* * Copyright (c) 2002, 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994,1995 Mark Brinicombe. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _ARM32_PMAP_H_ #define _ARM32_PMAP_H_ #ifdef _KERNEL #include #include #ifndef _LOCORE #if defined(_KERNEL_OPT) #include "opt_arm32_pmap.h" #include "opt_multiprocessor.h" #endif #include #include #include #include #endif #ifdef ARM_MMU_EXTENDED #define PMAP_HWPAGEWALKER 1 #define PMAP_TLB_MAX 1 #if PMAP_TLB_MAX > 1 #define PMAP_TLB_NEED_SHOOTDOWN 1 #endif #define PMAP_TLB_FLUSH_ASID_ON_RESET arm_has_tlbiasid_p #define PMAP_TLB_NUM_PIDS 256 #define cpu_set_tlb_info(ci, ti) ((void)((ci)->ci_tlb_info = (ti))) #if PMAP_TLB_MAX > 1 #define cpu_tlb_info(ci) ((ci)->ci_tlb_info) #else #define cpu_tlb_info(ci) (&pmap_tlb0_info) #endif #define pmap_md_tlb_asid_max() (PMAP_TLB_NUM_PIDS - 1) #include #include /* * If we have an EXTENDED MMU and the address space is split evenly between * user and kernel, we can use the TTBR0/TTBR1 to have separate L1 tables for * user and kernel address spaces. */ #if (KERNEL_BASE & 0x80000000) == 0 #error ARMv6 or later systems must have a KERNEL_BASE >= 0x80000000 #endif #endif /* ARM_MMU_EXTENDED */ /* * a pmap describes a processes' 4GB virtual address space. this * virtual address space can be broken up into 4096 1MB regions which * are described by L1 PTEs in the L1 table. * * There is a line drawn at KERNEL_BASE. Everything below that line * changes when the VM context is switched. Everything above that line * is the same no matter which VM context is running. This is achieved * by making the L1 PTEs for those slots above KERNEL_BASE reference * kernel L2 tables. * * The basic layout of the virtual address space thus looks like this: * * 0xffffffff * . * . * . * KERNEL_BASE * -------------------- * . * . * . * 0x00000000 */ /* * The number of L2 descriptor tables which can be tracked by an l2_dtable. * A bucket size of 16 provides for 16MB of contiguous virtual address * space per l2_dtable. Most processes will, therefore, require only two or * three of these to map their whole working set. */ #define L2_BUCKET_XLOG2 (L1_S_SHIFT) #define L2_BUCKET_XSIZE (1 << L2_BUCKET_XLOG2) #define L2_BUCKET_LOG2 4 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) /* * Given the above "L2-descriptors-per-l2_dtable" constant, the number * of l2_dtable structures required to track all possible page descriptors * mappable by an L1 translation table is given by the following constants: */ #define L2_LOG2 (32 - (L2_BUCKET_XLOG2 + L2_BUCKET_LOG2)) #define L2_SIZE (1 << L2_LOG2) /* * tell MI code that the cache is virtually-indexed. * ARMv6 is physically-tagged but all others are virtually-tagged. */ #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 #define PMAP_CACHE_VIPT #else #define PMAP_CACHE_VIVT #endif #ifndef _LOCORE #ifndef ARM_MMU_EXTENDED struct l1_ttable; struct l2_dtable; /* * Track cache/tlb occupancy using the following structure */ union pmap_cache_state { struct { union { uint8_t csu_cache_b[2]; uint16_t csu_cache; } cs_cache_u; union { uint8_t csu_tlb_b[2]; uint16_t csu_tlb; } cs_tlb_u; } cs_s; uint32_t cs_all; }; #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] #define cs_cache cs_s.cs_cache_u.csu_cache #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] #define cs_tlb cs_s.cs_tlb_u.csu_tlb /* * Assigned to cs_all to force cacheops to work for a particular pmap */ #define PMAP_CACHE_STATE_ALL 0xffffffffu #endif /* !ARM_MMU_EXTENDED */ /* * This structure is used by machine-dependent code to describe * static mappings of devices, created at bootstrap time. */ struct pmap_devmap { vaddr_t pd_va; /* virtual address */ paddr_t pd_pa; /* physical address */ psize_t pd_size; /* size of region */ vm_prot_t pd_prot; /* protection code */ int pd_cache; /* cache attributes */ }; #define DEVMAP_ALIGN(a) ((a) & ~L1_S_OFFSET) #define DEVMAP_SIZE(s) roundup2((s), L1_S_SIZE) #define DEVMAP_ENTRY(va, pa, sz) \ { \ .pd_va = DEVMAP_ALIGN(va), \ .pd_pa = DEVMAP_ALIGN(pa), \ .pd_size = DEVMAP_SIZE(sz), \ .pd_prot = VM_PROT_READ|VM_PROT_WRITE, \ .pd_cache = PTE_DEV \ } #define DEVMAP_ENTRY_END { 0 } /* * The pmap structure itself */ struct pmap { kmutex_t pm_lock; u_int pm_refs; #ifndef ARM_HAS_VBAR pd_entry_t *pm_pl1vec; pd_entry_t pm_l1vec; #endif struct l2_dtable *pm_l2[L2_SIZE]; struct pmap_statistics pm_stats; LIST_ENTRY(pmap) pm_list; bool pm_remove_all; #ifdef ARM_MMU_EXTENDED pd_entry_t *pm_l1; paddr_t pm_l1_pa; #ifdef MULTIPROCESSOR kcpuset_t *pm_onproc; kcpuset_t *pm_active; #if PMAP_TLB_MAX > 1 u_int pm_shootdown_pending; #endif #endif struct pmap_asid_info pm_pai[PMAP_TLB_MAX]; #else struct l1_ttable *pm_l1; union pmap_cache_state pm_cstate; uint8_t pm_domain; bool pm_activated; #endif }; struct pmap_kernel { struct pmap kernel_pmap; }; /* * Physical / virtual address structure. In a number of places (particularly * during bootstrapping) we need to keep track of the physical and virtual * addresses of various pages */ typedef struct pv_addr { SLIST_ENTRY(pv_addr) pv_list; paddr_t pv_pa; vaddr_t pv_va; vsize_t pv_size; uint8_t pv_cache; uint8_t pv_prot; } pv_addr_t; typedef SLIST_HEAD(, pv_addr) pv_addrqh_t; extern pv_addrqh_t pmap_freeq; extern pv_addr_t kernelstack; extern pv_addr_t abtstack; extern pv_addr_t fiqstack; extern pv_addr_t irqstack; extern pv_addr_t undstack; extern pv_addr_t idlestack; extern pv_addr_t systempage; extern pv_addr_t kernel_l1pt; #if defined(EFI_RUNTIME) extern pv_addr_t efirt_l1pt; #endif #ifdef ARM_MMU_EXTENDED extern bool arm_has_tlbiasid_p; /* also in */ #endif /* * Determine various modes for PTEs (user vs. kernel, cacheable * vs. non-cacheable). */ #define PTE_KERNEL 0 #define PTE_USER 1 #define PTE_NOCACHE 0 #define PTE_CACHE 1 #define PTE_PAGETABLE 2 #define PTE_DEV 3 /* * Flags that indicate attributes of pages or mappings of pages. * * The PVF_MOD and PVF_REF flags are stored in the mdpage for each * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual * pv_entry's for each page. They live in the same "namespace" so * that we can clear multiple attributes at a time. * * Note the "non-cacheable" flag generally means the page has * multiple mappings in a given address space. */ #define PVF_MOD 0x01 /* page is modified */ #define PVF_REF 0x02 /* page is referenced */ #define PVF_WIRED 0x04 /* mapping is wired */ #define PVF_WRITE 0x08 /* mapping is writable */ #define PVF_EXEC 0x10 /* mapping is executable */ #ifdef PMAP_CACHE_VIVT #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ #define PVF_NC (PVF_UNC|PVF_KNC) #endif #ifdef PMAP_CACHE_VIPT #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */ #define PVF_MULTCLR 0x40 /* mapping is multi-colored */ #endif #define PVF_COLORED 0x80 /* page has or had a color */ #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */ #define PVF_KMPAGE 0x0200 /* page is used for kmem */ #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */ #define PVF_KMOD 0x0800 /* unmanaged page is modified */ #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE) #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE) /* * Commonly referenced structures */ extern int arm_poolpage_vmfreelist; /* * Macros that we need to export */ #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) #define pmap_is_modified(pg) \ (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) #define pmap_is_referenced(pg) \ (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) #define pmap_is_page_colored_p(md) \ (((md)->pvh_attrs & PVF_COLORED) != 0) #define pmap_copy(dp, sp, da, l, sa) /* nothing */ #define pmap_phys_address(ppn) (arm_ptob((ppn))) u_int arm32_mmap_flags(paddr_t); #define ARM32_MMAP_WRITECOMBINE 0x40000000 #define ARM32_MMAP_CACHEABLE 0x20000000 #define ARM_MMAP_WRITECOMBINE ARM32_MMAP_WRITECOMBINE #define ARM_MMAP_CACHEABLE ARM32_MMAP_CACHEABLE #define pmap_mmap_flags(ppn) arm32_mmap_flags(ppn) #define PMAP_PTE 0x10000000 /* kenter_pa */ #define PMAP_DEV 0x20000000 /* kenter_pa */ #define PMAP_DEV_SO 0x40000000 /* kenter_pa */ #define PMAP_DEV_MASK (PMAP_DEV | PMAP_DEV_SO) /* * Functions that we need to export */ void pmap_procwr(struct proc *, vaddr_t, int); bool pmap_remove_all(pmap_t); bool pmap_extract(pmap_t, vaddr_t, paddr_t *); #define PMAP_NEED_PROCWR #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */ #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td)) void pmap_prefer(vaddr_t, vaddr_t *, int); #endif #ifdef ARM_MMU_EXTENDED int pmap_maxproc_set(int); struct pmap * pmap_efirt(void); #endif void pmap_icache_sync_range(pmap_t, vaddr_t, vaddr_t); /* Functions we use internally. */ #ifdef PMAP_STEAL_MEMORY void pmap_boot_pagealloc(psize_t, psize_t, psize_t, pv_addr_t *); void pmap_boot_pageadd(pv_addr_t *); vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *); #endif void pmap_bootstrap(vaddr_t, vaddr_t); struct pmap * pmap_efirt(void); void pmap_activate_efirt(void); void pmap_deactivate_efirt(void); void pmap_do_remove(pmap_t, vaddr_t, vaddr_t, int); int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); int pmap_prefetchabt_fixup(void *); bool pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); bool pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); bool pmap_extract_coherency(pmap_t, vaddr_t, paddr_t *, bool *); void pmap_postinit(void); void vector_page_setprot(int); const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t); const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t); /* Bootstrapping routines. */ void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); void pmap_unmap_chunk(vaddr_t, vaddr_t, vsize_t); void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *); void pmap_devmap_register(const struct pmap_devmap *); /* * Special page zero routine for use by the idle loop (no cache cleans). */ bool pmap_pageidlezero(paddr_t); #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS /* * For the pmap, this is a more useful way to map a direct mapped page. * It returns either the direct-mapped VA or the VA supplied if it can't * be direct mapped. */ vaddr_t pmap_direct_mapped_phys(paddr_t, bool *, vaddr_t); #endif /* * used by dumpsys to record the PA of the L1 table */ uint32_t pmap_kernel_L1_addr(void); /* * The current top of kernel VM */ extern vaddr_t pmap_curmaxkvaddr; #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) /* * Ending VA of direct mapped memory (usually KERNEL_VM_BASE). */ extern vaddr_t pmap_directlimit; #endif /* * Useful macros and constants */ /* Virtual address to page table entry */ static inline pt_entry_t * vtopte(vaddr_t va) { pd_entry_t *pdep; pt_entry_t *ptep; KASSERT(trunc_page(va) == va); if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == false) return (NULL); return (ptep); } /* * Virtual address to physical address */ static inline paddr_t vtophys(vaddr_t va) { paddr_t pa; if (pmap_extract(pmap_kernel(), va, &pa) == false) return (0); /* XXXSCW: Panic? */ return (pa); } /* * The new pmap ensures that page-tables are always mapping Write-Thru. * Thus, on some platforms we can run fast and loose and avoid syncing PTEs * on every change. * * Unfortunately, not all CPUs have a write-through cache mode. So we * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, * and if there is the chance for PTE syncs to be needed, we define * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) * the code. */ extern int pmap_needs_pte_sync; #if defined(_KERNEL_OPT) /* * Perform compile time evaluation of PMAP_NEEDS_PTE_SYNC when only a * single MMU type is selected. * * StrongARM SA-1 caches do not have a write-through mode. So, on these, * we need to do PTE syncs. Additionally, V6 MMUs also need PTE syncs. * Finally, MEMC, GENERIC and XSCALE MMUs do not need PTE syncs. * * Use run time evaluation for all other cases. * */ #if (ARM_NMMUS == 1) #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) #define PMAP_INCLUDE_PTE_SYNC #define PMAP_NEEDS_PTE_SYNC 1 #elif (ARM_MMU_MEMC + ARM_MMU_GENERIC + ARM_MMU_XSCALE != 0) #define PMAP_NEEDS_PTE_SYNC 0 #endif #endif #endif /* _KERNEL_OPT */ /* * Provide a fallback in case we were not able to determine it at * compile-time. */ #ifndef PMAP_NEEDS_PTE_SYNC #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync #define PMAP_INCLUDE_PTE_SYNC #endif static inline void pmap_ptesync(pt_entry_t *ptep, size_t cnt) { if (PMAP_NEEDS_PTE_SYNC) { cpu_dcache_wb_range((vaddr_t)ptep, cnt * sizeof(pt_entry_t)); #ifdef SHEEVA_L2_CACHE cpu_sdcache_wb_range((vaddr_t)ptep, -1, cnt * sizeof(pt_entry_t)); #endif } dsb(sy); } #define PDE_SYNC(pdep) pmap_ptesync((pdep), 1) #define PDE_SYNC_RANGE(pdep, cnt) pmap_ptesync((pdep), (cnt)) #define PTE_SYNC(ptep) pmap_ptesync((ptep), PAGE_SIZE / L2_S_SIZE) #define PTE_SYNC_RANGE(ptep, cnt) pmap_ptesync((ptep), (cnt)) #define l1pte_valid_p(pde) ((pde) != 0) #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) #define l1pte_supersection_p(pde) (l1pte_section_p(pde) \ && ((pde) & L1_S_V6_SUPER) != 0) #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) #define l1pte_pa(pde) ((pde) & L1_C_ADDR_MASK) #define l1pte_index(v) ((vaddr_t)(v) >> L1_S_SHIFT) static inline void l1pte_setone(pt_entry_t *pdep, pt_entry_t pde) { *pdep = pde; } static inline void l1pte_set(pt_entry_t *pdep, pt_entry_t pde) { *pdep = pde; if (l1pte_page_p(pde)) { KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (PAGE_SIZE / L2_T_SIZE - 1)) == 0, "%p", pdep); for (int k = 1; k < PAGE_SIZE / L2_T_SIZE; k++) { pde += L2_T_SIZE; pdep[k] = pde; } } else if (l1pte_supersection_p(pde)) { KASSERTMSG((((uintptr_t)pdep / sizeof(pde)) & (L1_SS_SIZE / L1_S_SIZE - 1)) == 0, "%p", pdep); for (int k = 1; k < L1_SS_SIZE / L1_S_SIZE; k++) { pdep[k] = pde; } } } #define l2pte_index(v) ((((v) & L2_ADDR_BITS) >> PGSHIFT) << (PGSHIFT-L2_S_SHIFT)) #define l2pte_valid_p(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV) #define l2pte_pa(pte) ((pte) & L2_S_FRAME) #define l1pte_lpage_p(pte) (((pte) & L2_TYPE_MASK) == L2_TYPE_L) #define l2pte_minidata_p(pte) (((pte) & \ (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\ == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X))) static inline void l2pte_set(pt_entry_t *ptep, pt_entry_t pte, pt_entry_t opte) { if (l1pte_lpage_p(pte)) { KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (L2_L_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); for (int k = 0; k < L2_L_SIZE / L2_S_SIZE; k++) { *ptep++ = pte; } } else { KASSERTMSG((((uintptr_t)ptep / sizeof(pte)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); for (int k = 0; k < PAGE_SIZE / L2_S_SIZE; k++) { KASSERTMSG(*ptep == opte, "%#x [*%p] != %#x", *ptep, ptep, opte); *ptep++ = pte; pte += L2_S_SIZE; if (opte) opte += L2_S_SIZE; } } } static inline void l2pte_reset(pt_entry_t *ptep) { KASSERTMSG((((uintptr_t)ptep / sizeof(*ptep)) & (PAGE_SIZE / L2_S_SIZE - 1)) == 0, "%p", ptep); *ptep = 0; for (int k = 1; k < PAGE_SIZE / L2_S_SIZE; k++) { ptep[k] = 0; } } /* L1 and L2 page table macros */ #define pmap_pde_v(pde) l1pte_valid(*(pde)) #define pmap_pde_section(pde) l1pte_section_p(*(pde)) #define pmap_pde_supersection(pde) l1pte_supersection_p(*(pde)) #define pmap_pde_page(pde) l1pte_page_p(*(pde)) #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) #define pmap_pte_v(pte) l2pte_valid_p(*(pte)) #define pmap_pte_pa(pte) l2pte_pa(*(pte)) static inline uint32_t pte_value(pt_entry_t pte) { return pte; } static inline bool pte_valid_p(pt_entry_t pte) { return l2pte_valid_p(pte); } /* Size of the kernel part of the L1 page table */ #define KERNEL_PD_SIZE \ (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) void bzero_page(vaddr_t); void bcopy_page(vaddr_t, vaddr_t); #ifdef FPU_VFP void bzero_page_vfp(vaddr_t); void bcopy_page_vfp(vaddr_t, vaddr_t); #endif /************************* ARM MMU configuration *****************************/ #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0 void pmap_copy_page_generic(paddr_t, paddr_t); void pmap_zero_page_generic(paddr_t); void pmap_pte_init_generic(void); #if defined(CPU_ARM8) void pmap_pte_init_arm8(void); #endif #if defined(CPU_ARM9) void pmap_pte_init_arm9(void); #endif /* CPU_ARM9 */ #if defined(CPU_ARM10) void pmap_pte_init_arm10(void); #endif /* CPU_ARM10 */ #if defined(CPU_ARM11) /* ARM_MMU_V6 */ void pmap_pte_init_arm11(void); #endif /* CPU_ARM11 */ #if defined(CPU_ARM11MPCORE) /* ARM_MMU_V6 */ void pmap_pte_init_arm11mpcore(void); #endif #if ARM_MMU_V6 == 1 void pmap_pte_init_armv6(void); #endif /* ARM_MMU_V6 */ #if ARM_MMU_V7 == 1 void pmap_pte_init_armv7(void); #endif /* ARM_MMU_V7 */ #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ #if ARM_MMU_SA1 == 1 void pmap_pte_init_sa1(void); #endif /* ARM_MMU_SA1 == 1 */ #if ARM_MMU_XSCALE == 1 void pmap_copy_page_xscale(paddr_t, paddr_t); void pmap_zero_page_xscale(paddr_t); void pmap_pte_init_xscale(void); void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); #define PMAP_UAREA(va) pmap_uarea(va) void pmap_uarea(vaddr_t); #endif /* ARM_MMU_XSCALE == 1 */ extern pt_entry_t pte_l1_s_nocache_mode; extern pt_entry_t pte_l2_l_nocache_mode; extern pt_entry_t pte_l2_s_nocache_mode; extern pt_entry_t pte_l1_s_cache_mode; extern pt_entry_t pte_l2_l_cache_mode; extern pt_entry_t pte_l2_s_cache_mode; extern pt_entry_t pte_l1_s_cache_mode_pt; extern pt_entry_t pte_l2_l_cache_mode_pt; extern pt_entry_t pte_l2_s_cache_mode_pt; extern pt_entry_t pte_l1_s_wc_mode; extern pt_entry_t pte_l2_l_wc_mode; extern pt_entry_t pte_l2_s_wc_mode; extern pt_entry_t pte_l1_s_cache_mask; extern pt_entry_t pte_l2_l_cache_mask; extern pt_entry_t pte_l2_s_cache_mask; extern pt_entry_t pte_l1_s_prot_u; extern pt_entry_t pte_l1_s_prot_w; extern pt_entry_t pte_l1_s_prot_ro; extern pt_entry_t pte_l1_s_prot_mask; extern pt_entry_t pte_l2_s_prot_u; extern pt_entry_t pte_l2_s_prot_w; extern pt_entry_t pte_l2_s_prot_ro; extern pt_entry_t pte_l2_s_prot_mask; extern pt_entry_t pte_l2_l_prot_u; extern pt_entry_t pte_l2_l_prot_w; extern pt_entry_t pte_l2_l_prot_ro; extern pt_entry_t pte_l2_l_prot_mask; extern pt_entry_t pte_l1_ss_proto; extern pt_entry_t pte_l1_s_proto; extern pt_entry_t pte_l1_c_proto; extern pt_entry_t pte_l2_s_proto; extern void (*pmap_copy_page_func)(paddr_t, paddr_t); extern void (*pmap_zero_page_func)(paddr_t); /* * Global varaiables in cpufunc_asm_xscale.S supporting the Xscale * cache clean/purge functions. */ extern vaddr_t xscale_minidata_clean_addr; extern vsize_t xscale_minidata_clean_size; extern vaddr_t xscale_cache_clean_addr; extern vsize_t xscale_cache_clean_size; #endif /* !_LOCORE */ /*****************************************************************************/ #define KERNEL_PID 0 /* The kernel uses ASID 0 */ /* * Definitions for MMU domains */ #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ #define PMAP_DOMAIN_KERNEL 0 /* The kernel pmap uses domain #0 */ #ifdef ARM_MMU_EXTENDED #define PMAP_DOMAIN_USER 1 /* User pmaps use domain #1 */ #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2))) #else #define DOMAIN_DEFAULT ((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))) #endif /* * These macros define the various bit masks in the PTE. * * We use these macros since we use different bits on different processor * models. */ #define L1_S_PROT_U_generic (L1_S_AP(AP_U)) #define L1_S_PROT_W_generic (L1_S_AP(AP_W)) #define L1_S_PROT_RO_generic (0) #define L1_S_PROT_MASK_generic (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) #define L1_S_PROT_U_xscale (L1_S_AP(AP_U)) #define L1_S_PROT_W_xscale (L1_S_AP(AP_W)) #define L1_S_PROT_RO_xscale (0) #define L1_S_PROT_MASK_xscale (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) #define L1_S_PROT_U_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) #define L1_S_PROT_W_armv6 (L1_S_AP(AP_W)) #define L1_S_PROT_RO_armv6 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) #define L1_S_PROT_MASK_armv6 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) #define L1_S_PROT_U_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_U)) #define L1_S_PROT_W_armv7 (L1_S_AP(AP_W)) #define L1_S_PROT_RO_armv7 (L1_S_AP(AP_R) | L1_S_AP(AP_RO)) #define L1_S_PROT_MASK_armv7 (L1_S_PROT_U|L1_S_PROT_W|L1_S_PROT_RO) #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X)) #define L1_S_CACHE_MASK_armv6 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)) #define L1_S_CACHE_MASK_armv6n (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) #define L1_S_CACHE_MASK_armv7 (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_ARMV6_TEX)|L1_S_V6_S) #define L2_L_PROT_U_generic (L2_AP(AP_U)) #define L2_L_PROT_W_generic (L2_AP(AP_W)) #define L2_L_PROT_RO_generic (0) #define L2_L_PROT_MASK_generic (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) #define L2_L_PROT_U_xscale (L2_AP(AP_U)) #define L2_L_PROT_W_xscale (L2_AP(AP_W)) #define L2_L_PROT_RO_xscale (0) #define L2_L_PROT_MASK_xscale (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) #define L2_L_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) #define L2_L_PROT_W_armv6n (L2_AP0(AP_W)) #define L2_L_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) #define L2_L_PROT_MASK_armv6n (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) #define L2_L_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) #define L2_L_PROT_W_armv7 (L2_AP0(AP_W)) #define L2_L_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) #define L2_L_PROT_MASK_armv7 (L2_L_PROT_U|L2_L_PROT_W|L2_L_PROT_RO) #define L2_L_CACHE_MASK_generic (L2_B|L2_C) #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X)) #define L2_L_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)) #define L2_L_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) #define L2_L_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_L_TEX(TEX_ARMV6_TEX)|L2_XS_S) #define L2_S_PROT_U_generic (L2_AP(AP_U)) #define L2_S_PROT_W_generic (L2_AP(AP_W)) #define L2_S_PROT_RO_generic (0) #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) #define L2_S_PROT_RO_xscale (0) #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) #define L2_S_PROT_U_armv6n (L2_AP0(AP_R) | L2_AP0(AP_U)) #define L2_S_PROT_W_armv6n (L2_AP0(AP_W)) #define L2_S_PROT_RO_armv6n (L2_AP0(AP_R) | L2_AP0(AP_RO)) #define L2_S_PROT_MASK_armv6n (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) #define L2_S_PROT_U_armv7 (L2_AP0(AP_R) | L2_AP0(AP_U)) #define L2_S_PROT_W_armv7 (L2_AP0(AP_W)) #define L2_S_PROT_RO_armv7 (L2_AP0(AP_R) | L2_AP0(AP_RO)) #define L2_S_PROT_MASK_armv7 (L2_S_PROT_U|L2_S_PROT_W|L2_S_PROT_RO) #define L2_S_CACHE_MASK_generic (L2_B|L2_C) #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X)) #define L2_XS_CACHE_MASK_armv6 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)) #ifdef ARMV6_EXTENDED_SMALL_PAGE #define L2_S_CACHE_MASK_armv6c L2_XS_CACHE_MASK_armv6 #else #define L2_S_CACHE_MASK_armv6c L2_S_CACHE_MASK_generic #endif #define L2_S_CACHE_MASK_armv6n (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) #define L2_S_CACHE_MASK_armv7 (L2_B|L2_C|L2_V6_XS_TEX(TEX_ARMV6_TEX)|L2_XS_S) #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) #define L1_S_PROTO_xscale (L1_TYPE_S) #define L1_S_PROTO_armv6 (L1_TYPE_S) #define L1_S_PROTO_armv7 (L1_TYPE_S) #define L1_SS_PROTO_generic 0 #define L1_SS_PROTO_xscale 0 #define L1_SS_PROTO_armv6 (L1_TYPE_S | L1_S_V6_SS) #define L1_SS_PROTO_armv7 (L1_TYPE_S | L1_S_V6_SS) #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) #define L1_C_PROTO_xscale (L1_TYPE_C) #define L1_C_PROTO_armv6 (L1_TYPE_C) #define L1_C_PROTO_armv7 (L1_TYPE_C) #define L2_L_PROTO (L2_TYPE_L) #define L2_S_PROTO_generic (L2_TYPE_S) #define L2_S_PROTO_xscale (L2_TYPE_XS) #ifdef ARMV6_EXTENDED_SMALL_PAGE #define L2_S_PROTO_armv6c (L2_TYPE_XS) /* XP=0, extended small page */ #else #define L2_S_PROTO_armv6c (L2_TYPE_S) /* XP=0, subpage APs */ #endif #ifdef ARM_MMU_EXTENDED #define L2_S_PROTO_armv6n (L2_TYPE_S|L2_XS_XN) #else #define L2_S_PROTO_armv6n (L2_TYPE_S) /* with XP=1 */ #endif #ifdef ARM_MMU_EXTENDED #define L2_S_PROTO_armv7 (L2_TYPE_S|L2_XS_XN) #else #define L2_S_PROTO_armv7 (L2_TYPE_S) #endif /* * User-visible names for the ones that vary with MMU class. */ #if ARM_NMMUS > 1 /* More than one MMU class configured; use variables. */ #define L1_S_PROT_U pte_l1_s_prot_u #define L1_S_PROT_W pte_l1_s_prot_w #define L1_S_PROT_RO pte_l1_s_prot_ro #define L1_S_PROT_MASK pte_l1_s_prot_mask #define L2_S_PROT_U pte_l2_s_prot_u #define L2_S_PROT_W pte_l2_s_prot_w #define L2_S_PROT_RO pte_l2_s_prot_ro #define L2_S_PROT_MASK pte_l2_s_prot_mask #define L2_L_PROT_U pte_l2_l_prot_u #define L2_L_PROT_W pte_l2_l_prot_w #define L2_L_PROT_RO pte_l2_l_prot_ro #define L2_L_PROT_MASK pte_l2_l_prot_mask #define L1_S_CACHE_MASK pte_l1_s_cache_mask #define L2_L_CACHE_MASK pte_l2_l_cache_mask #define L2_S_CACHE_MASK pte_l2_s_cache_mask #define L1_SS_PROTO pte_l1_ss_proto #define L1_S_PROTO pte_l1_s_proto #define L1_C_PROTO pte_l1_c_proto #define L2_S_PROTO pte_l2_s_proto #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 #define L1_S_PROT_U L1_S_PROT_U_generic #define L1_S_PROT_W L1_S_PROT_W_generic #define L1_S_PROT_RO L1_S_PROT_RO_generic #define L1_S_PROT_MASK L1_S_PROT_MASK_generic #define L2_S_PROT_U L2_S_PROT_U_generic #define L2_S_PROT_W L2_S_PROT_W_generic #define L2_S_PROT_RO L2_S_PROT_RO_generic #define L2_S_PROT_MASK L2_S_PROT_MASK_generic #define L2_L_PROT_U L2_L_PROT_U_generic #define L2_L_PROT_W L2_L_PROT_W_generic #define L2_L_PROT_RO L2_L_PROT_RO_generic #define L2_L_PROT_MASK L2_L_PROT_MASK_generic #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic #define L1_SS_PROTO L1_SS_PROTO_generic #define L1_S_PROTO L1_S_PROTO_generic #define L1_C_PROTO L1_C_PROTO_generic #define L2_S_PROTO L2_S_PROTO_generic #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) #define pmap_zero_page(d) pmap_zero_page_generic((d)) #elif ARM_MMU_V6N != 0 #define L1_S_PROT_U L1_S_PROT_U_armv6 #define L1_S_PROT_W L1_S_PROT_W_armv6 #define L1_S_PROT_RO L1_S_PROT_RO_armv6 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv6 #define L2_S_PROT_U L2_S_PROT_U_armv6n #define L2_S_PROT_W L2_S_PROT_W_armv6n #define L2_S_PROT_RO L2_S_PROT_RO_armv6n #define L2_S_PROT_MASK L2_S_PROT_MASK_armv6n #define L2_L_PROT_U L2_L_PROT_U_armv6n #define L2_L_PROT_W L2_L_PROT_W_armv6n #define L2_L_PROT_RO L2_L_PROT_RO_armv6n #define L2_L_PROT_MASK L2_L_PROT_MASK_armv6n #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv6n #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv6n #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv6n /* * These prototypes make writeable mappings, while the other MMU types * make read-only mappings. */ #define L1_SS_PROTO L1_SS_PROTO_armv6 #define L1_S_PROTO L1_S_PROTO_armv6 #define L1_C_PROTO L1_C_PROTO_armv6 #define L2_S_PROTO L2_S_PROTO_armv6n #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) #define pmap_zero_page(d) pmap_zero_page_generic((d)) #elif ARM_MMU_V6C != 0 #define L1_S_PROT_U L1_S_PROT_U_generic #define L1_S_PROT_W L1_S_PROT_W_generic #define L1_S_PROT_RO L1_S_PROT_RO_generic #define L1_S_PROT_MASK L1_S_PROT_MASK_generic #define L2_S_PROT_U L2_S_PROT_U_generic #define L2_S_PROT_W L2_S_PROT_W_generic #define L2_S_PROT_RO L2_S_PROT_RO_generic #define L2_S_PROT_MASK L2_S_PROT_MASK_generic #define L2_L_PROT_U L2_L_PROT_U_generic #define L2_L_PROT_W L2_L_PROT_W_generic #define L2_L_PROT_RO L2_L_PROT_RO_generic #define L2_L_PROT_MASK L2_L_PROT_MASK_generic #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic #define L1_SS_PROTO L1_SS_PROTO_armv6 #define L1_S_PROTO L1_S_PROTO_generic #define L1_C_PROTO L1_C_PROTO_generic #define L2_S_PROTO L2_S_PROTO_generic #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) #define pmap_zero_page(d) pmap_zero_page_generic((d)) #elif ARM_MMU_XSCALE == 1 #define L1_S_PROT_U L1_S_PROT_U_generic #define L1_S_PROT_W L1_S_PROT_W_generic #define L1_S_PROT_RO L1_S_PROT_RO_generic #define L1_S_PROT_MASK L1_S_PROT_MASK_generic #define L2_S_PROT_U L2_S_PROT_U_xscale #define L2_S_PROT_W L2_S_PROT_W_xscale #define L2_S_PROT_RO L2_S_PROT_RO_xscale #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale #define L2_L_PROT_U L2_L_PROT_U_generic #define L2_L_PROT_W L2_L_PROT_W_generic #define L2_L_PROT_RO L2_L_PROT_RO_generic #define L2_L_PROT_MASK L2_L_PROT_MASK_generic #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale #define L1_SS_PROTO L1_SS_PROTO_xscale #define L1_S_PROTO L1_S_PROTO_xscale #define L1_C_PROTO L1_C_PROTO_xscale #define L2_S_PROTO L2_S_PROTO_xscale #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) #define pmap_zero_page(d) pmap_zero_page_xscale((d)) #elif ARM_MMU_V7 == 1 #define L1_S_PROT_U L1_S_PROT_U_armv7 #define L1_S_PROT_W L1_S_PROT_W_armv7 #define L1_S_PROT_RO L1_S_PROT_RO_armv7 #define L1_S_PROT_MASK L1_S_PROT_MASK_armv7 #define L2_S_PROT_U L2_S_PROT_U_armv7 #define L2_S_PROT_W L2_S_PROT_W_armv7 #define L2_S_PROT_RO L2_S_PROT_RO_armv7 #define L2_S_PROT_MASK L2_S_PROT_MASK_armv7 #define L2_L_PROT_U L2_L_PROT_U_armv7 #define L2_L_PROT_W L2_L_PROT_W_armv7 #define L2_L_PROT_RO L2_L_PROT_RO_armv7 #define L2_L_PROT_MASK L2_L_PROT_MASK_armv7 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_armv7 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_armv7 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_armv7 /* * These prototypes make writeable mappings, while the other MMU types * make read-only mappings. */ #define L1_SS_PROTO L1_SS_PROTO_armv7 #define L1_S_PROTO L1_S_PROTO_armv7 #define L1_C_PROTO L1_C_PROTO_armv7 #define L2_S_PROTO L2_S_PROTO_armv7 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) #define pmap_zero_page(d) pmap_zero_page_generic((d)) #endif /* ARM_NMMUS > 1 */ /* * Macros to set and query the write permission on page descriptors. */ #define l1pte_set_writable(pte) (((pte) & ~L1_S_PROT_RO) | L1_S_PROT_W) #define l1pte_set_readonly(pte) (((pte) & ~L1_S_PROT_W) | L1_S_PROT_RO) #define l2pte_set_writable(pte) (((pte) & ~L2_S_PROT_RO) | L2_S_PROT_W) #define l2pte_set_readonly(pte) (((pte) & ~L2_S_PROT_W) | L2_S_PROT_RO) #define l2pte_writable_p(pte) (((pte) & L2_S_PROT_W) == L2_S_PROT_W && \ (L2_S_PROT_RO == 0 || \ ((pte) & L2_S_PROT_RO) != L2_S_PROT_RO)) /* * These macros return various bits based on kernel/user and protection. * Note that the compiler will usually fold these at compile time. */ #define L1_S_PROT(ku, pr) ( \ (((ku) == PTE_USER) ? \ L1_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0) \ : \ (((L1_S_PROT_RO && \ ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ L1_S_PROT_RO : L1_S_PROT_W))) \ ) #define L2_L_PROT(ku, pr) ( \ (((ku) == PTE_USER) ? \ L2_L_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0) \ : \ (((L2_L_PROT_RO && \ ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ L2_L_PROT_RO : L2_L_PROT_W))) \ ) #define L2_S_PROT(ku, pr) ( \ (((ku) == PTE_USER) ? \ L2_S_PROT_U | (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0) \ : \ (((L2_S_PROT_RO && \ ((pr) & (VM_PROT_READ | VM_PROT_WRITE)) == VM_PROT_READ) ? \ L2_S_PROT_RO : L2_S_PROT_W))) \ ) /* * Macros to test if a mapping is mappable with an L1 SuperSection, * L1 Section, or an L2 Large Page mapping. */ #define L1_SS_MAPPABLE_P(va, pa, size) \ ((((va) | (pa)) & L1_SS_OFFSET) == 0 && (size) >= L1_SS_SIZE) #define L1_S_MAPPABLE_P(va, pa, size) \ ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) #define L2_L_MAPPABLE_P(va, pa, size) \ ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) #define PMAP_MAPSIZE1 L2_L_SIZE #define PMAP_MAPSIZE2 L1_S_SIZE #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 #define PMAP_MAPSIZE3 L1_SS_SIZE #endif #ifndef _LOCORE /* * Hooks for the pool allocator. */ #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) extern paddr_t physical_start, physical_end; #ifdef PMAP_NEED_ALLOC_POOLPAGE struct vm_page *arm_pmap_alloc_poolpage(int); #define PMAP_ALLOC_POOLPAGE arm_pmap_alloc_poolpage #endif #if defined(PMAP_NEED_ALLOC_POOLPAGE) || defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) vaddr_t pmap_map_poolpage(paddr_t); paddr_t pmap_unmap_poolpage(vaddr_t); #define PMAP_MAP_POOLPAGE(pa) pmap_map_poolpage(pa) #define PMAP_UNMAP_POOLPAGE(va) pmap_unmap_poolpage(va) #endif #define __HAVE_PMAP_PV_TRACK 1 void pmap_pv_protect(paddr_t, vm_prot_t); struct pmap_page { SLIST_HEAD(,pv_entry) pvh_list; /* pv_entry list */ int pvh_attrs; /* page attributes */ u_int uro_mappings; u_int urw_mappings; union { u_short s_mappings[2]; /* Assume kernel count <= 65535 */ u_int i_mappings; } k_u; }; /* * pmap-specific data store in the vm_page structure. */ #define __HAVE_VM_PAGE_MD struct vm_page_md { struct pmap_page pp; #define pvh_list pp.pvh_list #define pvh_attrs pp.pvh_attrs #define uro_mappings pp.uro_mappings #define urw_mappings pp.urw_mappings #define kro_mappings pp.k_u.s_mappings[0] #define krw_mappings pp.k_u.s_mappings[1] #define k_mappings pp.k_u.i_mappings }; #define PMAP_PAGE_TO_MD(ppage) container_of((ppage), struct vm_page_md, pp) /* * Set the default color of each page. */ #if ARM_MMU_V6 > 0 #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ (pg)->mdpage.pvh_attrs = VM_PAGE_TO_PHYS(pg) & arm_cache_prefer_mask #else #define VM_MDPAGE_PVH_ATTRS_INIT(pg) \ (pg)->mdpage.pvh_attrs = 0 #endif #define VM_MDPAGE_INIT(pg) \ do { \ SLIST_INIT(&(pg)->mdpage.pvh_list); \ VM_MDPAGE_PVH_ATTRS_INIT(pg); \ (pg)->mdpage.uro_mappings = 0; \ (pg)->mdpage.urw_mappings = 0; \ (pg)->mdpage.k_mappings = 0; \ } while (/*CONSTCOND*/0) #ifndef __BSD_PTENTRY_T__ #define __BSD_PTENTRY_T__ typedef uint32_t pt_entry_t; #define PRIxPTE PRIx32 #endif #endif /* !_LOCORE */ #endif /* _KERNEL */ #endif /* _ARM32_PMAP_H_ */