/* $NetBSD: esp.c,v 1.64 2022/08/15 12:16:25 rin Exp $ */ /* * Copyright (c) 1997 Jason R. Thorpe. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project * by Jason R. Thorpe. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994 Peter Galbavy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Peter Galbavy * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Based on aic6360 by Jarle Greipsland * * Acknowledgements: Many of the algorithms used in this driver are * inspired by the work of Julian Elischer (julian@tfs.com) and * Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million! */ /* * Initial m68k mac support from Allen Briggs <briggs@macbsd.com> * (basically consisting of the match, a bit of the attach, and the * "DMA" glue functions). */ /* * AV DMA support from Michael Zucca (mrz5149@acm.org) */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: esp.c,v 1.64 2022/08/15 12:16:25 rin Exp $"); #include <sys/types.h> #include <sys/param.h> #include <sys/buf.h> #include <sys/bus.h> #include <sys/device.h> #include <uvm/uvm_extern.h> #include <dev/scsipi/scsiconf.h> #include <dev/ic/ncr53c9xreg.h> #include <dev/ic/ncr53c9xvar.h> #include <machine/cpu.h> #include <machine/psc.h> #include <machine/viareg.h> #include <mac68k/obio/espvar.h> #include <mac68k/obio/obiovar.h> static int espmatch(device_t, cfdata_t, void *); static void espattach(device_t, device_t, void *); /* Linkup to the rest of the kernel */ CFATTACH_DECL_NEW(esp, sizeof(struct esp_softc), espmatch, espattach, NULL, NULL); /* * Functions and the switch for the MI code. */ static uint8_t esp_read_reg(struct ncr53c9x_softc *, int); static void esp_write_reg(struct ncr53c9x_softc *, int, uint8_t); static int esp_dma_isintr(struct ncr53c9x_softc *); static void esp_dma_reset(struct ncr53c9x_softc *); static int esp_dma_intr(struct ncr53c9x_softc *); static int esp_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int, size_t *); static void esp_dma_go(struct ncr53c9x_softc *); static void esp_dma_stop(struct ncr53c9x_softc *); static int esp_dma_isactive(struct ncr53c9x_softc *); static void esp_dma_write_reg(struct ncr53c9x_softc *, int, uint8_t); static int esp_quick_dma_intr(struct ncr53c9x_softc *); static int esp_quick_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int, size_t *); static void esp_quick_dma_go(struct ncr53c9x_softc *); static void esp_av_dma_reset(struct ncr53c9x_softc *); static int esp_av_dma_intr(struct ncr53c9x_softc *); static int esp_av_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int, size_t *); static void esp_av_dma_go(struct ncr53c9x_softc *); static void esp_av_dma_stop(struct ncr53c9x_softc *); static void esp_intr(void *); static void esp_dualbus_intr(void *); static int esp_dafb_have_dreq(struct esp_softc *); static int esp_iosb_have_dreq(struct esp_softc *); int (*esp_have_dreq)(struct esp_softc *); static struct esp_softc *esp0, *esp1; static struct ncr53c9x_glue esp_glue = { .gl_read_reg = esp_read_reg, .gl_write_reg = esp_write_reg, .gl_dma_isintr = esp_dma_isintr, .gl_dma_reset = esp_dma_reset, .gl_dma_intr = esp_dma_intr, .gl_dma_setup = esp_dma_setup, .gl_dma_go = esp_dma_go, .gl_dma_stop = esp_dma_stop, .gl_dma_isactive = esp_dma_isactive, .gl_clear_latched_intr = NULL, }; static int espmatch(device_t parent, cfdata_t cf, void *aux) { struct obio_attach_args *oa = aux; if (oa->oa_addr == 0 && mac68k_machine.scsi96) return 1; if (oa->oa_addr == 1 && mac68k_machine.scsi96_2) return 1; return 0; } /* * Attach this instance, and then all the sub-devices */ static void espattach(device_t parent, device_t self, void *aux) { struct esp_softc *esc = device_private(self); struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x; struct obio_attach_args *oa = aux; bus_addr_t addr; unsigned long reg_offset; int quick = 0, avdma = 0; uint8_t irq_mask; /* mask for clearing IRQ */ extern vaddr_t SCSIBase; sc->sc_dev = self; reg_offset = SCSIBase - IOBase; /* * For Wombat, Primus and Optimus motherboards, DREQ is * visible on bit 0 of the IOSB's emulated VIA2 vIFR (and * the scsi registers are offset 0x1000 bytes from IOBase). * * For the Q700/900/950 it's at f9800024 for bus 0 and * f9800028 for bus 1 (900/950). For these machines, that is also * a (12-bit) configuration register for DAFB's control of the * pseudo-DMA timing. The default value is 0x1d1. */ if (oa->oa_addr == 0) { switch (reg_offset) { case 0x10000: quick = 1; esp_have_dreq = esp_iosb_have_dreq; break; case 0x18000: avdma = 1; break; default: addr = 0xf9800024; goto dafb_dreq; } } else { bus_space_tag_t bst; bus_space_handle_t bsh; addr = 0xf9800028; dafb_dreq: bst = oa->oa_tag; if (bus_space_map(bst, addr, 4, 0, &bsh)) aprint_error(": failed to map 4 at 0x%lx.\n", addr); else { quick = 1; esp_have_dreq = esp_dafb_have_dreq; esc->sc_dreqreg = (volatile uint32_t *) bus_space_vaddr(bst, bsh); *esc->sc_dreqreg = 0x1d1; } } if (quick) { esp_glue.gl_write_reg = esp_dma_write_reg; esp_glue.gl_dma_intr = esp_quick_dma_intr; esp_glue.gl_dma_setup = esp_quick_dma_setup; esp_glue.gl_dma_go = esp_quick_dma_go; } else if (avdma) { esp_glue.gl_write_reg = esp_dma_write_reg; esp_glue.gl_dma_reset = esp_av_dma_reset; esp_glue.gl_dma_intr = esp_av_dma_intr; esp_glue.gl_dma_setup = esp_av_dma_setup; esp_glue.gl_dma_go = esp_av_dma_go; esp_glue.gl_dma_stop = esp_av_dma_stop; } /* * Set up the glue for MI code early; we use some of it here. */ sc->sc_glue = &esp_glue; /* * Save the regs */ if (oa->oa_addr == 0) { esp0 = esc; esc->sc_reg = (volatile uint8_t *)SCSIBase; via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc); irq_mask = V2IF_SCSIIRQ; switch (reg_offset) { case 0x10000: /* From the Q650 developer's note */ sc->sc_freq = 16500000; break; case 0x18000: /* From Quadra 840AV Service Source */ sc->sc_freq = 20000000; break; default: sc->sc_freq = 25000000; break; } } else { esp1 = esc; esc->sc_reg = (volatile uint8_t *)SCSIBase + 0x402; via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL); irq_mask = 0; sc->sc_freq = 25000000; } if (quick) aprint_normal(" (quick)"); else if (avdma) aprint_normal(" (avdma)"); aprint_normal(": address %p", esc->sc_reg); sc->sc_id = 7; /* gimme MHz */ sc->sc_freq /= 1000000; /* * It is necessary to try to load the 2nd config register here, * to find out what rev the esp chip is, else the esp_reset * will not set up the defaults correctly. */ sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */ sc->sc_cfg2 = NCRCFG2_SCSI2; if (avdma) { sc->sc_cfg3 = NCRCFG3_CDB; sc->sc_rev = NCR_VARIANT_NCR53C94; } else { sc->sc_cfg3 = 0; sc->sc_rev = NCR_VARIANT_NCR53C96; } /* * This is the value used to start sync negotiations * Note that the NCR register "SYNCTP" is programmed * in "clocks per byte", and has a minimum value of 4. * The SCSI period used in negotiation is one-fourth * of the time (in nanoseconds) needed to transfer one byte. * Since the chip's clock is given in MHz, we have the following * formula: 4 * period = (1000 / freq) * 4 */ sc->sc_minsync = 1000 / sc->sc_freq; /* We need this to fit into the TCR... */ sc->sc_maxxfer = 64 * 1024; switch (current_mac_model->machineid) { case MACH_MACQ630: /* XXX on LC630 64k xfer causes timeout error */ sc->sc_maxxfer = 63 * 1024; break; } if (!quick && !avdma) { /* * No synchronous xfers w/o DMA. */ sc->sc_minsync = 0; sc->sc_maxxfer = 8 * 1024; } /* * Configure interrupts. */ if (irq_mask) { via2_reg(vPCR) = 0x22; via2_reg(vIFR) = irq_mask; via2_reg(vIER) = 0x80 | irq_mask; } /* * Setup for AV DMA */ if (avdma) { bus_dma_segment_t osegs, isegs; int orsegs, irsegs; esc->sc_rset = 0; esc->sc_dmat = oa->oa_dmat; if (bus_dmamap_create(esc->sc_dmat, sc->sc_maxxfer, 1, sc->sc_maxxfer, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &esc->sc_dmap)) { printf("failed to create DMA map.\n"); return; } /* * Allocate ``bounce'' buffers which satisfy constraints * required by PSC, see esp_av_dma_setup(). */ if (bus_dmamem_alloc(esc->sc_dmat, NBPG, 16, NBPG, &osegs, 1, &orsegs, BUS_DMA_NOWAIT)) { printf("failed to allocate o-bounce buffer.\n"); goto out1; } if (bus_dmamem_map(esc->sc_dmat, &osegs, orsegs, NBPG, (void **)&esc->sc_obuf, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { printf("failed to map o-bounce buffer.\n"); goto out2; } if (bus_dmamem_alloc(esc->sc_dmat, NBPG, 16, NBPG, &isegs, 1, &irsegs, BUS_DMA_NOWAIT)) { printf("failed to allocate i-bounce buffer.\n"); goto out3; } if (bus_dmamem_map(esc->sc_dmat, &isegs, irsegs, NBPG, (void **)&esc->sc_ibuf, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) { printf("failed to map i-bounce buffer.\n"); bus_dmamem_free(esc->sc_dmat, &isegs, irsegs); out3: bus_dmamem_unmap(esc->sc_dmat, sc->sc_omess, sc->sc_maxxfer); out2: bus_dmamem_free(esc->sc_dmat, &osegs, orsegs); out1: bus_dmamap_destroy(esc->sc_dmat, esc->sc_dmap); return; } } #if 0 /* * This degrades performance; FIFO is better than bounce DMA for * short SCSI commands and their responses. */ if (avdma) { /* Turn on target selection using the `DMA' method */ sc->sc_features |= NCR_F_DMASELECT; } #endif /* * Now try to attach all the sub-devices */ sc->sc_adapter.adapt_minphys = minphys; sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request; ncr53c9x_attach(sc); } /* * Glue functions. */ static uint8_t esp_read_reg(struct ncr53c9x_softc *sc, int reg) { struct esp_softc *esc = (struct esp_softc *)sc; return esc->sc_reg[reg * 16]; } static void esp_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val) { struct esp_softc *esc = (struct esp_softc *)sc; uint8_t v = val; if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) { v = NCRCMD_TRANS; } esc->sc_reg[reg * 16] = v; } static void esp_dma_stop(struct ncr53c9x_softc *sc) { } static int esp_dma_isactive(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; return esc->sc_active; } static int esp_dma_isintr(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; return esc->sc_reg[NCR_STAT * 16] & NCRSTAT_INT; } static void esp_dma_reset(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_active = 0; esc->sc_tc = 0; } static int esp_dma_intr(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; volatile uint8_t *cmdreg, *intrreg, *statreg, *fiforeg; uint8_t *p; u_int espphase, espstat, espintr; int cnt, s; if (esc->sc_active == 0) { printf("dma_intr--inactive DMA\n"); return -1; } if ((sc->sc_espintr & NCRINTR_BS) == 0) { esc->sc_active = 0; return 0; } cnt = *esc->sc_dmalen; if (*esc->sc_dmalen == 0) { printf("data interrupt, but no count left.\n"); } p = *esc->sc_dmaaddr; espphase = sc->sc_phase; espstat = (u_int)sc->sc_espstat; espintr = (u_int)sc->sc_espintr; cmdreg = esc->sc_reg + NCR_CMD * 16; fiforeg = esc->sc_reg + NCR_FIFO * 16; statreg = esc->sc_reg + NCR_STAT * 16; intrreg = esc->sc_reg + NCR_INTR * 16; do { if (esc->sc_datain) { *p++ = *fiforeg; cnt--; if (espphase == DATA_IN_PHASE) { *cmdreg = NCRCMD_TRANS; } else { esc->sc_active = 0; } } else { if ( (espphase == DATA_OUT_PHASE) || (espphase == MESSAGE_OUT_PHASE)) { *fiforeg = *p++; cnt--; *cmdreg = NCRCMD_TRANS; } else { esc->sc_active = 0; } } if (esc->sc_active) { while (!(*statreg & 0x80)); s = splhigh(); espstat = *statreg; espintr = *intrreg; espphase = (espintr & NCRINTR_DIS) ? /* Disconnected */ BUSFREE_PHASE : espstat & PHASE_MASK; splx(s); } } while (esc->sc_active && (espintr & NCRINTR_BS)); sc->sc_phase = espphase; sc->sc_espstat = (uint8_t)espstat; sc->sc_espintr = (uint8_t)espintr; *esc->sc_dmaaddr = p; *esc->sc_dmalen = cnt; if (*esc->sc_dmalen == 0) { esc->sc_tc = NCRSTAT_TC; } sc->sc_espstat |= esc->sc_tc; return 0; } static int esp_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len, int datain, size_t *dmasize) { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_dmaaddr = addr; esc->sc_dmalen = len; esc->sc_datain = datain; esc->sc_dmasize = *dmasize; esc->sc_tc = 0; return 0; } static void esp_dma_go(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; if (esc->sc_datain == 0) { esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr; (*esc->sc_dmalen)--; (*esc->sc_dmaaddr)++; } esc->sc_active = 1; } static void esp_dma_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val) { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_reg[reg * 16] = val; } #if DEBUG int mac68k_esp_debug=0; #endif static int esp_quick_dma_intr(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; int trans=0, resid=0; if (esc->sc_active == 0) panic("dma_intr--inactive DMA"); esc->sc_active = 0; if (esc->sc_dmasize == 0) { int res; res = NCR_READ_REG(sc, NCR_TCL); res += NCR_READ_REG(sc, NCR_TCM) << 8; /* This can happen in the case of a TRPAD operation */ /* Pretend that it was complete */ sc->sc_espstat |= NCRSTAT_TC; #if DEBUG if (mac68k_esp_debug) { printf("dmaintr: DMA xfer of zero xferred %d\n", 65536 - res); } #endif return 0; } if ((sc->sc_espstat & NCRSTAT_TC) == 0) { if (esc->sc_datain == 0) { resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f; #if DEBUG if (mac68k_esp_debug) { printf("Write FIFO residual %d bytes\n", resid); } #endif } resid += NCR_READ_REG(sc, NCR_TCL); resid += NCR_READ_REG(sc, NCR_TCM) << 8; if (resid == 0) resid = 65536; } trans = esc->sc_dmasize - resid; if (trans < 0) { printf("dmaintr: trans < 0????\n"); trans = *esc->sc_dmalen; } NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid)); #if DEBUG if (mac68k_esp_debug) { printf("eqd_intr: trans %d, resid %d.\n", trans, resid); } #endif *esc->sc_dmaaddr += trans; *esc->sc_dmalen -= trans; return 0; } static int esp_quick_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len, int datain, size_t *dmasize) { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_dmaaddr = addr; esc->sc_dmalen = len; if (*len & 1) { esc->sc_pad = 1; } else { esc->sc_pad = 0; } esc->sc_datain = datain; esc->sc_dmasize = *dmasize; #if DIAGNOSTIC if (esc->sc_dmasize == 0) { /* This can happen in the case of a TRPAD operation */ } #endif #if DEBUG if (mac68k_esp_debug) { printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n", (long) *addr, (long) *len, datain, (long) esc->sc_dmasize); } #endif return 0; } static int esp_dafb_have_dreq(struct esp_softc *esc) { return *esc->sc_dreqreg & 0x200; } static int esp_iosb_have_dreq(struct esp_softc *esc) { return via2_reg(vIFR) & V2IF_SCSIDRQ; } static volatile int espspl = -1; /* * Apple "DMA" is weird. * * Basically, the CPU acts like the DMA controller. The DREQ/ off the * chip goes to a register that we've mapped at attach time (on the * IOSB or DAFB, depending on the machine). Apple also provides some * space for which the memory controller handshakes data to/from the * NCR chip with the DACK/ line. This space appears to be mapped over * and over, every 4 bytes, but only the lower 16 bits are valid (but * reading the upper 16 bits will handshake DACK/ just fine, so if you * read *uint16_t++ = *uint16_t++ in a loop, you'll get * <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff... * * When you're attempting to read or write memory to this DACK/ed space, * and the NCR is not ready for some timeout period, the system will * generate a bus error. This might be for one of several reasons: * * 1) (on write) The FIFO is full and is not draining. * 2) (on read) The FIFO is empty and is not filling. * 3) An interrupt condition has occurred. * 4) Anything else? * * So if a bus error occurs, we first turn off the nofault bus error handler, * then we check for an interrupt (which would render the first two * possibilities moot). If there's no interrupt, check for a DREQ/. If we * have that, then attempt to resume stuffing (or unstuffing) the FIFO. If * neither condition holds, pause briefly and check again. * * NOTE!!! In order to make allowances for the hardware structure of * the mac, spl values in here are hardcoded!!!!!!!!! * This is done to allow serial interrupts to get in during * scsi transfers. This is ugly. */ static void esp_quick_dma_go(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; extern long mac68k_a2_fromfault; extern int *nofault; label_t faultbuf; uint16_t volatile *pdma; uint16_t *addr; int len, res; uint16_t cnt32, cnt2; volatile uint8_t *statreg; esc->sc_active = 1; espspl = splhigh(); addr = (uint16_t *)*esc->sc_dmaaddr; len = esc->sc_dmasize; restart_dmago: #if DEBUG if (mac68k_esp_debug) { printf("eqdg: a %lx, l %lx, in? %d ... ", (long) addr, (long) len, esc->sc_datain); } #endif nofault = (int *)&faultbuf; if (setjmp((label_t *)nofault)) { int i = 0; nofault = NULL; #if DEBUG if (mac68k_esp_debug) { printf("be\n"); } #endif /* * Bus error... * So, we first check for an interrupt. If we have * one, go handle it. Next we check for DREQ/. If * we have it, then we restart the transfer. If * neither, then loop until we get one or the other. */ statreg = esc->sc_reg + NCR_STAT * 16; for (;;) { spl2(); /* Give serial a chance... */ splhigh(); /* That's enough... */ if (*statreg & 0x80) { goto gotintr; } if (esp_have_dreq(esc)) { /* * Get the remaining length from the address * differential. */ addr = (uint16_t *)mac68k_a2_fromfault; len = esc->sc_dmasize - ((long)addr - (long)*esc->sc_dmaaddr); if (esc->sc_datain == 0) { /* * Let the FIFO drain before we read * the transfer count. * Do we need to do this? * Can we do this? */ while (NCR_READ_REG(sc, NCR_FFLAG) & 0x1f); /* * Get the length from the transfer * counters. */ res = NCR_READ_REG(sc, NCR_TCL); res += NCR_READ_REG(sc, NCR_TCM) << 8; /* * If they don't agree, * adjust accordingly. */ while (res > len) { len+=2; addr--; } if (res != len) { panic("%s: res %d != len %d", __func__, res, len); } } break; } DELAY(1); if (i++ > 1000000) panic("%s: Bus error, but no condition! Argh!", __func__); } goto restart_dmago; } len &= ~1; statreg = esc->sc_reg + NCR_STAT * 16; pdma = (volatile uint16_t *)(esc->sc_reg + 0x100); /* * These loops are unrolled into assembly for two reasons: * 1) We can make sure that they are as efficient as possible, and * 2) (more importantly) we need the address that we are reading * from or writing to to be in a2. */ cnt32 = len / 32; cnt2 = (len % 32) / 2; if (esc->sc_datain == 0) { /* while (cnt32--) { 16 instances of *pdma = *addr++; } */ /* while (cnt2--) { *pdma = *addr++; } */ __asm volatile ( " movl %1, %%a2 \n" " movl %2, %%a3 \n" " movw %3, %%d2 \n" " cmpw #0, %%d2 \n" " beq 2f \n" " subql #1, %%d2 \n" "1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ \n" " movw #8704,%%sr \n" " movw #9728,%%sr \n" " dbra %%d2, 1b \n" "2: movw %4, %%d2 \n" " cmpw #0, %%d2 \n" " beq 4f \n" " subql #1, %%d2 \n" "3: movw %%a2@+,%%a3@ \n" " dbra %%d2, 3b \n" "4: movl %%a2, %0" : "=g" (addr) : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2) : "a2", "a3", "d2"); if (esc->sc_pad) { volatile uint8_t *c; c = (volatile uint8_t *) addr; /* Wait for DREQ */ while (!esp_have_dreq(esc)) { if (*statreg & 0x80) { nofault = NULL; goto gotintr; } } *(volatile int8_t *)pdma = *c; } } else { /* while (cnt32--) { 16 instances of *addr++ = *pdma; } */ /* while (cnt2--) { *addr++ = *pdma; } */ __asm volatile ( " movl %1, %%a2 \n" " movl %2, %%a3 \n" " movw %3, %%d2 \n" " cmpw #0, %%d2 \n" " beq 6f \n" " subql #1, %%d2 \n" "5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ \n" " movw #8704,%%sr \n" " movw #9728,%%sr \n" " dbra %%d2, 5b \n" "6: movw %4, %%d2 \n" " cmpw #0, %%d2 \n" " beq 8f \n" " subql #1, %%d2 \n" "7: movw %%a3@,%%a2@+ \n" " dbra %%d2, 7b \n" "8: movl %%a2, %0" : "=g" (addr) : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2) : "a2", "a3", "d2"); if (esc->sc_pad) { volatile uint8_t *c; c = (volatile int8_t *)addr; /* Wait for DREQ */ while (!esp_have_dreq(esc)) { if (*statreg & 0x80) { nofault = NULL; goto gotintr; } } *c = *(volatile uint8_t *)pdma; } } nofault = NULL; /* * If we have not received an interrupt yet, we should shortly, * and we can't prevent it, so return and wait for it. */ if ((*statreg & 0x80) == 0) { #if DEBUG if (mac68k_esp_debug) { printf("g.\n"); } #endif if (espspl != -1) splx(espspl); espspl = -1; return; } gotintr: #if DEBUG if (mac68k_esp_debug) { printf("g!\n"); } #endif /* * We have been called from the MI ncr53c9x_intr() handler, * which protects itself against multiple invocation with a * lock. Follow the example of ncr53c9x_poll(). */ mutex_exit(&sc->sc_lock); ncr53c9x_intr(sc); mutex_enter(&sc->sc_lock); if (espspl != -1) splx(espspl); espspl = -1; } static void esp_intr(void *sc) { struct esp_softc *esc = (struct esp_softc *)sc; if (esc->sc_reg[NCR_STAT * 16] & 0x80) { ncr53c9x_intr((struct ncr53c9x_softc *)esp0); } } static void esp_dualbus_intr(void *sc) { if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) { ncr53c9x_intr((struct ncr53c9x_softc *)esp0); } if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) { ncr53c9x_intr((struct ncr53c9x_softc *)esp1); } } static void esp_av_dma_reset(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; uint32_t res; if (esc->sc_active) stop_psc_dma(PSC_DMA_CHANNEL_SCSI, esc->sc_rset, &res, esc->sc_datain); esc->sc_active = 0; } static int esp_av_dma_intr(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; uint32_t resid; int trans; KASSERT(esc->sc_active); #if DEBUG int tc_size; tc_size = NCR_READ_REG(sc, NCR_TCM); tc_size <<= 8; tc_size |= NCR_READ_REG(sc, NCR_TCL); printf("[av_dma_intr: intr 0x%x stat 0x%x tc 0x%x dmasize %zu]\n", sc->sc_espintr, sc->sc_espstat, tc_size, esc->sc_dmasize); #endif esc->sc_active = 0; if (esc->sc_dmasize == 0) { /* A "Transfer Pad" operation completed */ #if DEBUG printf("%s: TRPAD done\n", __func__); #endif return 0; } #if 0 /* * XXXRO dead code * Left unremoved for reference how to use wait_psc_dma(). */ if ((sc->sc_espintr & NCRINTR_BS) && (sc->sc_espstat & NCRSTAT_TC)) { /* Wait for engine to finish the transfer */ wait_psc_dma(PSC_DMA_CHANNEL_SCSI, esc->sc_rset, &resid); # if DEBUG printf("[av_dma_intr: DMA %s done]\n", esc->sc_datain ? "read" : "write"); # endif } #endif /* Halt the DMA engine */ stop_psc_dma(PSC_DMA_CHANNEL_SCSI, esc->sc_rset, &resid, esc->sc_datain); #if DEBUG printf("[av_dma_intr: DMA resid %u]\n", resid); #endif bus_dmamap_sync(esc->sc_dmat, esc->sc_dmap, 0, esc->sc_dmasize, esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(esc->sc_dmat, esc->sc_dmap); trans = esc->sc_dmasize - resid; if (__predict_false(trans < 0)) { #if DEBUG printf("[av_dma_intr: xfer (%d) > req (%zu)]\n", trans, esc->sc_dmasize); #endif trans = esc->sc_dmasize; } #if DEBUG printf("[av_dma_intr: DMA %s of %d bytes done with %u residual]\n", esc->sc_datain ? "read" : "write", trans, resid); #endif if (__predict_false(esc->sc_ibuf_used)) { memcpy(*esc->sc_dmaaddr, esc->sc_ibuf, trans); esc->sc_ibuf_used = 0; } *esc->sc_dmaaddr += trans; *esc->sc_dmalen -= trans; return 0; } static int esp_av_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len, int datain, size_t *dmasize) { struct esp_softc *esc = (struct esp_softc *)sc; uint8_t **dmaaddr; esc->sc_dmaaddr = dmaaddr = addr; esc->sc_dmalen = len; esc->sc_datain = datain; /* * XXXRO * No need to set up DMA in `Transfer Pad' operation. */ if (*dmasize == 0) { esc->sc_dmasize = 0; return 0; } /* * According to analysis by Michael Zucca, PSC seems to * require that DMA buffer is * (1) aligned to 16-byte boundares, and * (2) multiple of 16 bytes in size. * If the buffer does not satisfy these constraints, use * ``bounce'' buffer instead. * * Note that this does not hurt I/O performance at all; * bounce buffer is not used by MI routines for data * transfer for filesystem nor swap operations. It is * used only * (a) when disk is attached, and * (b) for special utilities like fsck(8) or fdisk(8) * as far as we can tell. * * Also note that PSC seems to allow buffer which does not * satisfy constraint (2) above. However, we use bounce * buffer for safety. This cannot affect performance anyway. * * Further, we prefer bounce buffer over PIO: * (A) NCR53C94/PSC do not seem to allow partial PIO. * (port-mac68k/56131) * (B) Synchronous transfer fails with PIO. */ if (__predict_false(*dmasize % 16 || (uintptr_t)*addr & 0xf)) { #if 1 /* XXXRO */ printf("[avdma bounce DMA %s addr %p size %zu]\n", datain ? "read" : "write", *addr, *dmasize); #endif *dmasize = uimin(*dmasize, NBPG); if (datain) { dmaaddr = &esc->sc_ibuf; esc->sc_ibuf_used = 1; } else { memset(esc->sc_obuf, 0, roundup2(*dmasize, 16)); memcpy(esc->sc_obuf, *addr, *dmasize); dmaaddr = &esc->sc_obuf; } } bus_dmamap_load(esc->sc_dmat, esc->sc_dmap, *dmaaddr, *dmasize, NULL, BUS_DMA_NOWAIT); /* * The DMA engine can only transfer one contiguous segment at a time. */ *dmasize = esc->sc_dmap->dm_segs[0].ds_len; esc->sc_dmasize = *dmasize; bus_dmamap_sync(esc->sc_dmat, esc->sc_dmap, 0, esc->sc_dmasize, esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); /* * We must start a DMA before the device is ready to transfer * data or the DMA engine gets confused and thinks it has to * do a write when it should really do a read. * * Doing this here also seems to work fine for DMA writes. */ #ifdef DEBUG printf("[av_dma_setup: DMA req %zu act %zu v %p p 0x%lx %s]\n", *len, esc->sc_dmasize, *esc->sc_dmaaddr, esc->sc_dmap->dm_segs[0].ds_addr, esc->sc_datain ? "read" : "write"); #endif start_psc_dma(PSC_DMA_CHANNEL_SCSI, &esc->sc_rset, esc->sc_dmap->dm_segs[0].ds_addr, esc->sc_dmasize, esc->sc_datain); return 0; } static void esp_av_dma_go(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; /* * XXXRO * No DMA transfer in Transfer Pad operation */ if (esc->sc_dmasize == 0) return; esc->sc_active = 1; } static void esp_av_dma_stop(struct ncr53c9x_softc *sc) { struct esp_softc *esc = (struct esp_softc *)sc; uint32_t res; if (esc->sc_active) stop_psc_dma(PSC_DMA_CHANNEL_SCSI, esc->sc_rset, &res, esc->sc_datain); bus_dmamap_unload(esc->sc_dmat, esc->sc_dmap); esc->sc_active = 0; }