/* Simulation code for the MIPS MDMX ASE. Copyright (C) 2002-2023 Free Software Foundation, Inc. Contributed by Ed Satterthwaite and Chris Demetriou, of Broadcom Corporation (SiByte). This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This must come before any other includes. */ #include "defs.h" #include <stdio.h> #include "sim-main.h" /* Within mdmx.c we refer to the sim_cpu directly. */ #define CPU cpu #define SD (CPU_STATE(CPU)) /* XXX FIXME: temporary hack while the impact of making unpredictable() a "normal" (non-igen) function is evaluated. */ #undef Unpredictable #define Unpredictable() unpredictable_action (cpu, cia) /* MDMX Representations An 8-bit packed byte element (OB) is always unsigned. The 24-bit accumulators are signed and are represented as 32-bit signed values, which are reduced to 24-bit signed values prior to Round and Clamp operations. A 16-bit packed halfword element (QH) is always signed. The 48-bit accumulators are signed and are represented as 64-bit signed values, which are reduced to 48-bit signed values prior to Round and Clamp operations. The code below assumes a 2's-complement representation of signed quantities. Care is required to clear extended sign bits when repacking fields. The code (and the code for arithmetic shifts in mips.igen) also makes the (not guaranteed portable) assumption that right shifts of signed quantities in C do sign extension. */ typedef uint64_t unsigned48; #define MASK48 (UNSIGNED64 (0xffffffffffff)) typedef uint32_t unsigned24; #define MASK24 (UNSIGNED32 (0xffffff)) typedef enum { mdmx_ob, /* OB (octal byte) */ mdmx_qh /* QH (quad half-word) */ } MX_fmt; typedef enum { sel_elem, /* element select */ sel_vect, /* vector select */ sel_imm /* immediate select */ } VT_select; #define OB_MAX ((uint8_t)0xFF) #define QH_MIN ((int16_t)0x8000) #define QH_MAX ((int16_t)0x7FFF) #define OB_CLAMP(x) ((uint8_t)((x) > OB_MAX ? OB_MAX : (x))) #define QH_CLAMP(x) ((int16_t)((x) < QH_MIN ? QH_MIN : \ ((x) > QH_MAX ? QH_MAX : (x)))) #define MX_FMT(fmtsel) (((fmtsel) & 0x1) == 0 ? mdmx_ob : mdmx_qh) #define MX_VT(fmtsel) (((fmtsel) & 0x10) == 0 ? sel_elem : \ (((fmtsel) & 0x18) == 0x10 ? sel_vect : sel_imm)) #define QH_ELEM(v,fmtsel) \ ((int16_t)(((v) >> (((fmtsel) & 0xC) << 2)) & 0xFFFF)) #define OB_ELEM(v,fmtsel) \ ((uint8_t)(((v) >> (((fmtsel) & 0xE) << 2)) & 0xFF)) typedef int16_t (*QH_FUNC)(int16_t, int16_t); typedef uint8_t (*OB_FUNC)(uint8_t, uint8_t); /* vectorized logical operators */ static int16_t AndQH(int16_t ts, int16_t tt) { return (int16_t)((uint16_t)ts & (uint16_t)tt); } static uint8_t AndOB(uint8_t ts, uint8_t tt) { return ts & tt; } static int16_t NorQH(int16_t ts, int16_t tt) { return (int16_t)(((uint16_t)ts | (uint16_t)tt) ^ 0xFFFF); } static uint8_t NorOB(uint8_t ts, uint8_t tt) { return (ts | tt) ^ 0xFF; } static int16_t OrQH(int16_t ts, int16_t tt) { return (int16_t)((uint16_t)ts | (uint16_t)tt); } static uint8_t OrOB(uint8_t ts, uint8_t tt) { return ts | tt; } static int16_t XorQH(int16_t ts, int16_t tt) { return (int16_t)((uint16_t)ts ^ (uint16_t)tt); } static uint8_t XorOB(uint8_t ts, uint8_t tt) { return ts ^ tt; } static int16_t SLLQH(int16_t ts, int16_t tt) { uint32_t s = (uint32_t)tt & 0xF; return (int16_t)(((uint32_t)ts << s) & 0xFFFF); } static uint8_t SLLOB(uint8_t ts, uint8_t tt) { uint32_t s = tt & 0x7; return (ts << s) & 0xFF; } static int16_t SRLQH(int16_t ts, int16_t tt) { uint32_t s = (uint32_t)tt & 0xF; return (int16_t)((uint16_t)ts >> s); } static uint8_t SRLOB(uint8_t ts, uint8_t tt) { uint32_t s = tt & 0x7; return ts >> s; } /* Vectorized arithmetic operators. */ static int16_t AddQH(int16_t ts, int16_t tt) { int32_t t = (int32_t)ts + (int32_t)tt; return QH_CLAMP(t); } static uint8_t AddOB(uint8_t ts, uint8_t tt) { uint32_t t = (uint32_t)ts + (uint32_t)tt; return OB_CLAMP(t); } static int16_t SubQH(int16_t ts, int16_t tt) { int32_t t = (int32_t)ts - (int32_t)tt; return QH_CLAMP(t); } static uint8_t SubOB(uint8_t ts, uint8_t tt) { int32_t t; t = (int32_t)ts - (int32_t)tt; if (t < 0) t = 0; return (uint8_t)t; } static int16_t MinQH(int16_t ts, int16_t tt) { return (ts < tt ? ts : tt); } static uint8_t MinOB(uint8_t ts, uint8_t tt) { return (ts < tt ? ts : tt); } static int16_t MaxQH(int16_t ts, int16_t tt) { return (ts > tt ? ts : tt); } static uint8_t MaxOB(uint8_t ts, uint8_t tt) { return (ts > tt ? ts : tt); } static int16_t MulQH(int16_t ts, int16_t tt) { int32_t t = (int32_t)ts * (int32_t)tt; return QH_CLAMP(t); } static uint8_t MulOB(uint8_t ts, uint8_t tt) { uint32_t t = (uint32_t)ts * (uint32_t)tt; return OB_CLAMP(t); } /* "msgn" and "sra" are defined only for QH format. */ static int16_t MsgnQH(int16_t ts, int16_t tt) { int16_t t; if (ts < 0) t = (tt == QH_MIN ? QH_MAX : -tt); else if (ts == 0) t = 0; else t = tt; return t; } static int16_t SRAQH(int16_t ts, int16_t tt) { uint32_t s = (uint32_t)tt & 0xF; return (int16_t)((int32_t)ts >> s); } /* "pabsdiff" and "pavg" are defined only for OB format. */ static uint8_t AbsDiffOB(uint8_t ts, uint8_t tt) { return (ts >= tt ? ts - tt : tt - ts); } static uint8_t AvgOB(uint8_t ts, uint8_t tt) { return ((uint32_t)ts + (uint32_t)tt + 1) >> 1; } /* Dispatch tables for operations that update a CPR. */ static const QH_FUNC qh_func[] = { AndQH, NorQH, OrQH, XorQH, SLLQH, SRLQH, AddQH, SubQH, MinQH, MaxQH, MulQH, MsgnQH, SRAQH, NULL, NULL }; static const OB_FUNC ob_func[] = { AndOB, NorOB, OrOB, XorOB, SLLOB, SRLOB, AddOB, SubOB, MinOB, MaxOB, MulOB, NULL, NULL, AbsDiffOB, AvgOB }; /* Auxiliary functions for CPR updates. */ /* Vector mapping for QH format. */ static uint64_t qh_vector_op(uint64_t v1, uint64_t v2, QH_FUNC func) { uint64_t result = 0; int i; int16_t h, h1, h2; for (i = 0; i < 64; i += 16) { h1 = (int16_t)(v1 & 0xFFFF); v1 >>= 16; h2 = (int16_t)(v2 & 0xFFFF); v2 >>= 16; h = (*func)(h1, h2); result |= ((uint64_t)((uint16_t)h) << i); } return result; } static uint64_t qh_map_op(uint64_t v1, int16_t h2, QH_FUNC func) { uint64_t result = 0; int i; int16_t h, h1; for (i = 0; i < 64; i += 16) { h1 = (int16_t)(v1 & 0xFFFF); v1 >>= 16; h = (*func)(h1, h2); result |= ((uint64_t)((uint16_t)h) << i); } return result; } /* Vector operations for OB format. */ static uint64_t ob_vector_op(uint64_t v1, uint64_t v2, OB_FUNC func) { uint64_t result = 0; int i; uint8_t b, b1, b2; for (i = 0; i < 64; i += 8) { b1 = v1 & 0xFF; v1 >>= 8; b2 = v2 & 0xFF; v2 >>= 8; b = (*func)(b1, b2); result |= ((uint64_t)b << i); } return result; } static uint64_t ob_map_op(uint64_t v1, uint8_t b2, OB_FUNC func) { uint64_t result = 0; int i; uint8_t b, b1; for (i = 0; i < 64; i += 8) { b1 = v1 & 0xFF; v1 >>= 8; b = (*func)(b1, b2); result |= ((uint64_t)b << i); } return result; } /* Primary entry for operations that update CPRs. */ uint64_t mdmx_cpr_op(sim_cpu *cpu, address_word cia, int op, uint64_t op1, int vt, MX_fmtsel fmtsel) { uint64_t op2; uint64_t result = 0; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = qh_map_op(op1, QH_ELEM(op2, fmtsel), qh_func[op]); break; case sel_vect: result = qh_vector_op(op1, ValueFPR(vt, fmt_mdmx), qh_func[op]); break; case sel_imm: result = qh_map_op(op1, vt, qh_func[op]); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = ob_map_op(op1, OB_ELEM(op2, fmtsel), ob_func[op]); break; case sel_vect: result = ob_vector_op(op1, ValueFPR(vt, fmt_mdmx), ob_func[op]); break; case sel_imm: result = ob_map_op(op1, vt, ob_func[op]); break; } break; default: Unpredictable (); } return result; } /* Operations that update CCs */ static void qh_vector_test(sim_cpu *cpu, uint64_t v1, uint64_t v2, int cond) { int i; int16_t h1, h2; int boolean; for (i = 0; i < 4; i++) { h1 = (int16_t)(v1 & 0xFFFF); v1 >>= 16; h2 = (int16_t)(v2 & 0xFFFF); v2 >>= 16; boolean = ((cond & MX_C_EQ) && (h1 == h2)) || ((cond & MX_C_LT) && (h1 < h2)); SETFCC(i, boolean); } } static void qh_map_test(sim_cpu *cpu, uint64_t v1, int16_t h2, int cond) { int i; int16_t h1; int boolean; for (i = 0; i < 4; i++) { h1 = (int16_t)(v1 & 0xFFFF); v1 >>= 16; boolean = ((cond & MX_C_EQ) && (h1 == h2)) || ((cond & MX_C_LT) && (h1 < h2)); SETFCC(i, boolean); } } static void ob_vector_test(sim_cpu *cpu, uint64_t v1, uint64_t v2, int cond) { int i; uint8_t b1, b2; int boolean; for (i = 0; i < 8; i++) { b1 = v1 & 0xFF; v1 >>= 8; b2 = v2 & 0xFF; v2 >>= 8; boolean = ((cond & MX_C_EQ) && (b1 == b2)) || ((cond & MX_C_LT) && (b1 < b2)); SETFCC(i, boolean); } } static void ob_map_test(sim_cpu *cpu, uint64_t v1, uint8_t b2, int cond) { int i; uint8_t b1; int boolean; for (i = 0; i < 8; i++) { b1 = (uint8_t)(v1 & 0xFF); v1 >>= 8; boolean = ((cond & MX_C_EQ) && (b1 == b2)) || ((cond & MX_C_LT) && (b1 < b2)); SETFCC(i, boolean); } } void mdmx_cc_op(sim_cpu *cpu, address_word cia, int cond, uint64_t v1, int vt, MX_fmtsel fmtsel) { uint64_t op2; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); qh_map_test(cpu, v1, QH_ELEM(op2, fmtsel), cond); break; case sel_vect: qh_vector_test(cpu, v1, ValueFPR(vt, fmt_mdmx), cond); break; case sel_imm: qh_map_test(cpu, v1, vt, cond); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); ob_map_test(cpu, v1, OB_ELEM(op2, fmtsel), cond); break; case sel_vect: ob_vector_test(cpu, v1, ValueFPR(vt, fmt_mdmx), cond); break; case sel_imm: ob_map_test(cpu, v1, vt, cond); break; } break; default: Unpredictable (); } } /* Pick operations. */ static uint64_t qh_vector_pick(sim_cpu *cpu, uint64_t v1, uint64_t v2, int tf) { uint64_t result = 0; int i, s; uint16_t h; s = 0; for (i = 0; i < 4; i++) { h = ((GETFCC(i) == tf) ? (v1 & 0xFFFF) : (v2 & 0xFFFF)); v1 >>= 16; v2 >>= 16; result |= ((uint64_t)h << s); s += 16; } return result; } static uint64_t qh_map_pick(sim_cpu *cpu, uint64_t v1, int16_t h2, int tf) { uint64_t result = 0; int i, s; uint16_t h; s = 0; for (i = 0; i < 4; i++) { h = (GETFCC(i) == tf) ? (v1 & 0xFFFF) : (uint16_t)h2; v1 >>= 16; result |= ((uint64_t)h << s); s += 16; } return result; } static uint64_t ob_vector_pick(sim_cpu *cpu, uint64_t v1, uint64_t v2, int tf) { uint64_t result = 0; int i, s; uint8_t b; s = 0; for (i = 0; i < 8; i++) { b = (GETFCC(i) == tf) ? (v1 & 0xFF) : (v2 & 0xFF); v1 >>= 8; v2 >>= 8; result |= ((uint64_t)b << s); s += 8; } return result; } static uint64_t ob_map_pick(sim_cpu *cpu, uint64_t v1, uint8_t b2, int tf) { uint64_t result = 0; int i, s; uint8_t b; s = 0; for (i = 0; i < 8; i++) { b = (GETFCC(i) == tf) ? (v1 & 0xFF) : b2; v1 >>= 8; result |= ((uint64_t)b << s); s += 8; } return result; } uint64_t mdmx_pick_op(sim_cpu *cpu, address_word cia, int tf, uint64_t v1, int vt, MX_fmtsel fmtsel) { uint64_t result = 0; uint64_t op2; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = qh_map_pick(cpu, v1, QH_ELEM(op2, fmtsel), tf); break; case sel_vect: result = qh_vector_pick(cpu, v1, ValueFPR(vt, fmt_mdmx), tf); break; case sel_imm: result = qh_map_pick(cpu, v1, vt, tf); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = ob_map_pick(cpu, v1, OB_ELEM(op2, fmtsel), tf); break; case sel_vect: result = ob_vector_pick(cpu, v1, ValueFPR(vt, fmt_mdmx), tf); break; case sel_imm: result = ob_map_pick(cpu, v1, vt, tf); break; } break; default: Unpredictable (); } return result; } /* Accumulators. */ typedef void (*QH_ACC)(signed48 *a, int16_t ts, int16_t tt); static void AccAddAQH(signed48 *a, int16_t ts, int16_t tt) { *a += (signed48)ts + (signed48)tt; } static void AccAddLQH(signed48 *a, int16_t ts, int16_t tt) { *a = (signed48)ts + (signed48)tt; } static void AccMulAQH(signed48 *a, int16_t ts, int16_t tt) { *a += (signed48)ts * (signed48)tt; } static void AccMulLQH(signed48 *a, int16_t ts, int16_t tt) { *a = (signed48)ts * (signed48)tt; } static void SubMulAQH(signed48 *a, int16_t ts, int16_t tt) { *a -= (signed48)ts * (signed48)tt; } static void SubMulLQH(signed48 *a, int16_t ts, int16_t tt) { *a = -((signed48)ts * (signed48)tt); } static void AccSubAQH(signed48 *a, int16_t ts, int16_t tt) { *a += (signed48)ts - (signed48)tt; } static void AccSubLQH(signed48 *a, int16_t ts, int16_t tt) { *a = (signed48)ts - (signed48)tt; } typedef void (*OB_ACC)(signed24 *acc, uint8_t ts, uint8_t tt); static void AccAddAOB(signed24 *a, uint8_t ts, uint8_t tt) { *a += (signed24)ts + (signed24)tt; } static void AccAddLOB(signed24 *a, uint8_t ts, uint8_t tt) { *a = (signed24)ts + (signed24)tt; } static void AccMulAOB(signed24 *a, uint8_t ts, uint8_t tt) { *a += (signed24)ts * (signed24)tt; } static void AccMulLOB(signed24 *a, uint8_t ts, uint8_t tt) { *a = (signed24)ts * (signed24)tt; } static void SubMulAOB(signed24 *a, uint8_t ts, uint8_t tt) { *a -= (signed24)ts * (signed24)tt; } static void SubMulLOB(signed24 *a, uint8_t ts, uint8_t tt) { *a = -((signed24)ts * (signed24)tt); } static void AccSubAOB(signed24 *a, uint8_t ts, uint8_t tt) { *a += (signed24)ts - (signed24)tt; } static void AccSubLOB(signed24 *a, uint8_t ts, uint8_t tt) { *a = (signed24)ts - (signed24)tt; } static void AccAbsDiffOB(signed24 *a, uint8_t ts, uint8_t tt) { uint8_t t = (ts >= tt ? ts - tt : tt - ts); *a += (signed24)t; } /* Dispatch tables for operations that update a CPR. */ static const QH_ACC qh_acc[] = { AccAddAQH, AccAddLQH, AccMulAQH, AccMulLQH, SubMulAQH, SubMulLQH, AccSubAQH, AccSubLQH, NULL }; static const OB_ACC ob_acc[] = { AccAddAOB, AccAddLOB, AccMulAOB, AccMulLOB, SubMulAOB, SubMulLOB, AccSubAOB, AccSubLOB, AccAbsDiffOB }; static void qh_vector_acc(signed48 a[], uint64_t v1, uint64_t v2, QH_ACC acc) { int i; int16_t h1, h2; for (i = 0; i < 4; i++) { h1 = (int16_t)(v1 & 0xFFFF); v1 >>= 16; h2 = (int16_t)(v2 & 0xFFFF); v2 >>= 16; (*acc)(&a[i], h1, h2); } } static void qh_map_acc(signed48 a[], uint64_t v1, int16_t h2, QH_ACC acc) { int i; int16_t h1; for (i = 0; i < 4; i++) { h1 = (int16_t)(v1 & 0xFFFF); v1 >>= 16; (*acc)(&a[i], h1, h2); } } static void ob_vector_acc(signed24 a[], uint64_t v1, uint64_t v2, OB_ACC acc) { int i; uint8_t b1, b2; for (i = 0; i < 8; i++) { b1 = v1 & 0xFF; v1 >>= 8; b2 = v2 & 0xFF; v2 >>= 8; (*acc)(&a[i], b1, b2); } } static void ob_map_acc(signed24 a[], uint64_t v1, uint8_t b2, OB_ACC acc) { int i; uint8_t b1; for (i = 0; i < 8; i++) { b1 = v1 & 0xFF; v1 >>= 8; (*acc)(&a[i], b1, b2); } } /* Primary entry for operations that accumulate */ void mdmx_acc_op(sim_cpu *cpu, address_word cia, int op, uint64_t op1, int vt, MX_fmtsel fmtsel) { uint64_t op2; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); qh_map_acc(ACC.qh, op1, QH_ELEM(op2, fmtsel), qh_acc[op]); break; case sel_vect: qh_vector_acc(ACC.qh, op1, ValueFPR(vt, fmt_mdmx), qh_acc[op]); break; case sel_imm: qh_map_acc(ACC.qh, op1, vt, qh_acc[op]); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); ob_map_acc(ACC.ob, op1, OB_ELEM(op2, fmtsel), ob_acc[op]); break; case sel_vect: ob_vector_acc(ACC.ob, op1, ValueFPR(vt, fmt_mdmx), ob_acc[op]); break; case sel_imm: ob_map_acc(ACC.ob, op1, vt, ob_acc[op]); break; } break; default: Unpredictable (); } } /* Reading and writing accumulator (no conversion). */ uint64_t mdmx_rac_op(sim_cpu *cpu, address_word cia, int op, int fmt) { uint64_t result; unsigned int shift; int i; shift = op; /* L = 00, M = 01, H = 10. */ result = 0; switch (fmt) { case MX_FMT_QH: shift <<= 4; /* 16 bits per element. */ for (i = 3; i >= 0; --i) { result <<= 16; result |= ((ACC.qh[i] >> shift) & 0xFFFF); } break; case MX_FMT_OB: shift <<= 3; /* 8 bits per element. */ for (i = 7; i >= 0; --i) { result <<= 8; result |= ((ACC.ob[i] >> shift) & 0xFF); } break; default: Unpredictable (); } return result; } void mdmx_wacl(sim_cpu *cpu, address_word cia, int fmt, uint64_t vs, uint64_t vt) { int i; switch (fmt) { case MX_FMT_QH: for (i = 0; i < 4; i++) { int32_t s = (int16_t)(vs & 0xFFFF); ACC.qh[i] = ((signed48)s << 16) | (vt & 0xFFFF); vs >>= 16; vt >>= 16; } break; case MX_FMT_OB: for (i = 0; i < 8; i++) { int16_t s = (int8_t)(vs & 0xFF); ACC.ob[i] = ((signed24)s << 8) | (vt & 0xFF); vs >>= 8; vt >>= 8; } break; default: Unpredictable (); } } void mdmx_wach(sim_cpu *cpu, address_word cia, int fmt, uint64_t vs) { int i; switch (fmt) { case MX_FMT_QH: for (i = 0; i < 4; i++) { int32_t s = (int16_t)(vs & 0xFFFF); ACC.qh[i] &= ~((signed48)0xFFFF << 32); ACC.qh[i] |= ((signed48)s << 32); vs >>= 16; } break; case MX_FMT_OB: for (i = 0; i < 8; i++) { ACC.ob[i] &= ~((signed24)0xFF << 16); ACC.ob[i] |= ((signed24)(vs & 0xFF) << 16); vs >>= 8; } break; default: Unpredictable (); } } /* Reading and writing accumulator (rounding conversions). Enumerating function guarantees s >= 0 for QH ops. */ typedef int16_t (*QH_ROUND)(signed48 a, int16_t s); #define QH_BIT(n) ((unsigned48)1 << (n)) #define QH_ONES(n) (((unsigned48)1 << (n))-1) static int16_t RNASQH(signed48 a, int16_t s) { signed48 t; int16_t result = 0; if (s > 48) result = 0; else { t = (a >> s); if ((a & QH_BIT(47)) == 0) { if (s > 0 && ((a >> (s-1)) & 1) == 1) t++; if (t > QH_MAX) t = QH_MAX; } else { if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s > 1 && ((unsigned48)a & QH_ONES(s-1)) != 0) t++; } if (t < QH_MIN) t = QH_MIN; } result = (int16_t)t; } return result; } static int16_t RNAUQH(signed48 a, int16_t s) { unsigned48 t; int16_t result; if (s > 48) result = 0; else if (s == 48) result = ((unsigned48)a & MASK48) >> 47; else { t = ((unsigned48)a & MASK48) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) t++; if (t > 0xFFFF) t = 0xFFFF; result = (int16_t)t; } return result; } static int16_t RNESQH(signed48 a, int16_t s) { signed48 t; int16_t result = 0; if (s > 47) result = 0; else { t = (a >> s); if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s == 1 || (a & QH_ONES(s-1)) == 0) t += t & 1; else t += 1; } if ((a & QH_BIT(47)) == 0) { if (t > QH_MAX) t = QH_MAX; } else { if (t < QH_MIN) t = QH_MIN; } result = (int16_t)t; } return result; } static int16_t RNEUQH(signed48 a, int16_t s) { unsigned48 t; int16_t result; if (s > 48) result = 0; else if (s == 48) result = ((unsigned48)a > QH_BIT(47) ? 1 : 0); else { t = ((unsigned48)a & MASK48) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s > 1 && (a & QH_ONES(s-1)) != 0) t++; else t += t & 1; } if (t > 0xFFFF) t = 0xFFFF; result = (int16_t)t; } return result; } static int16_t RZSQH(signed48 a, int16_t s) { signed48 t; int16_t result = 0; if (s > 47) result = 0; else { t = (a >> s); if ((a & QH_BIT(47)) == 0) { if (t > QH_MAX) t = QH_MAX; } else { if (t < QH_MIN) t = QH_MIN; } result = (int16_t)t; } return result; } static int16_t RZUQH(signed48 a, int16_t s) { unsigned48 t; int16_t result = 0; if (s > 48) result = 0; else if (s == 48) result = ((unsigned48)a > QH_BIT(47) ? 1 : 0); else { t = ((unsigned48)a & MASK48) >> s; if (t > 0xFFFF) t = 0xFFFF; result = (int16_t)t; } return result; } typedef uint8_t (*OB_ROUND)(signed24 a, uint8_t s); #define OB_BIT(n) ((unsigned24)1 << (n)) #define OB_ONES(n) (((unsigned24)1 << (n))-1) static uint8_t RNAUOB(signed24 a, uint8_t s) { uint8_t result; unsigned24 t; if (s > 24) result = 0; else if (s == 24) result = ((unsigned24)a & MASK24) >> 23; else { t = ((unsigned24)a & MASK24) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) t ++; result = OB_CLAMP(t); } return result; } static uint8_t RNEUOB(signed24 a, uint8_t s) { uint8_t result; unsigned24 t; if (s > 24) result = 0; else if (s == 24) result = (((unsigned24)a & MASK24) > OB_BIT(23) ? 1 : 0); else { t = ((unsigned24)a & MASK24) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s > 1 && (a & OB_ONES(s-1)) != 0) t++; else t += t & 1; } result = OB_CLAMP(t); } return result; } static uint8_t RZUOB(signed24 a, uint8_t s) { uint8_t result; unsigned24 t; if (s >= 24) result = 0; else { t = ((unsigned24)a & MASK24) >> s; result = OB_CLAMP(t); } return result; } static const QH_ROUND qh_round[] = { RNASQH, RNAUQH, RNESQH, RNEUQH, RZSQH, RZUQH }; static const OB_ROUND ob_round[] = { NULL, RNAUOB, NULL, RNEUOB, NULL, RZUOB }; static uint64_t qh_vector_round(sim_cpu *cpu, address_word cia, uint64_t v2, QH_ROUND round) { uint64_t result = 0; int i, s; int16_t h, h2; s = 0; for (i = 0; i < 4; i++) { h2 = (int16_t)(v2 & 0xFFFF); if (h2 >= 0) h = (*round)(ACC.qh[i], h2); else { UnpredictableResult (); h = 0xdead; } v2 >>= 16; result |= ((uint64_t)((uint16_t)h) << s); s += 16; } return result; } static uint64_t qh_map_round(sim_cpu *cpu, address_word cia, int16_t h2, QH_ROUND round) { uint64_t result = 0; int i, s; int16_t h; s = 0; for (i = 0; i < 4; i++) { if (h2 >= 0) h = (*round)(ACC.qh[i], h2); else { UnpredictableResult (); h = 0xdead; } result |= ((uint64_t)((uint16_t)h) << s); s += 16; } return result; } static uint64_t ob_vector_round(sim_cpu *cpu, address_word cia, uint64_t v2, OB_ROUND round) { uint64_t result = 0; int i, s; uint8_t b, b2; s = 0; for (i = 0; i < 8; i++) { b2 = v2 & 0xFF; v2 >>= 8; b = (*round)(ACC.ob[i], b2); result |= ((uint64_t)b << s); s += 8; } return result; } static uint64_t ob_map_round(sim_cpu *cpu, address_word cia, uint8_t b2, OB_ROUND round) { uint64_t result = 0; int i, s; uint8_t b; s = 0; for (i = 0; i < 8; i++) { b = (*round)(ACC.ob[i], b2); result |= ((uint64_t)b << s); s += 8; } return result; } uint64_t mdmx_round_op(sim_cpu *cpu, address_word cia, int rm, int vt, MX_fmtsel fmtsel) { uint64_t op2; uint64_t result = 0; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = qh_map_round(cpu, cia, QH_ELEM(op2, fmtsel), qh_round[rm]); break; case sel_vect: op2 = ValueFPR(vt, fmt_mdmx); result = qh_vector_round(cpu, cia, op2, qh_round[rm]); break; case sel_imm: result = qh_map_round(cpu, cia, vt, qh_round[rm]); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = ob_map_round(cpu, cia, OB_ELEM(op2, fmtsel), ob_round[rm]); break; case sel_vect: op2 = ValueFPR(vt, fmt_mdmx); result = ob_vector_round(cpu, cia, op2, ob_round[rm]); break; case sel_imm: result = ob_map_round(cpu, cia, vt, ob_round[rm]); break; } break; default: Unpredictable (); } return result; } /* Shuffle operation. */ typedef struct { enum {vs, ss, vt} source; unsigned int index; } sh_map; static const sh_map ob_shuffle[][8] = { /* MDMX 2.0 encodings (3-4, 6-7). */ /* vr5400 encoding (5), otherwise. */ { }, /* RSVD */ {{vt,4}, {vs,4}, {vt,5}, {vs,5}, {vt,6}, {vs,6}, {vt,7}, {vs,7}}, /* RSVD */ {{vt,0}, {vs,0}, {vt,1}, {vs,1}, {vt,2}, {vs,2}, {vt,3}, {vs,3}}, /* RSVD */ {{vs,0}, {ss,0}, {vs,1}, {ss,1}, {vs,2}, {ss,2}, {vs,3}, {ss,3}}, /* upsl */ {{vt,1}, {vt,3}, {vt,5}, {vt,7}, {vs,1}, {vs,3}, {vs,5}, {vs,7}}, /* pach */ {{vt,0}, {vt,2}, {vt,4}, {vt,6}, {vs,0}, {vs,2}, {vs,4}, {vs,6}}, /* pacl */ {{vt,4}, {vs,4}, {vt,5}, {vs,5}, {vt,6}, {vs,6}, {vt,7}, {vs,7}}, /* mixh */ {{vt,0}, {vs,0}, {vt,1}, {vs,1}, {vt,2}, {vs,2}, {vt,3}, {vs,3}} /* mixl */ }; static const sh_map qh_shuffle[][4] = { {{vt,2}, {vs,2}, {vt,3}, {vs,3}}, /* mixh */ {{vt,0}, {vs,0}, {vt,1}, {vs,1}}, /* mixl */ {{vt,1}, {vt,3}, {vs,1}, {vs,3}}, /* pach */ { }, /* RSVD */ {{vt,1}, {vs,0}, {vt,3}, {vs,2}}, /* bfla */ { }, /* RSVD */ {{vt,2}, {vt,3}, {vs,2}, {vs,3}}, /* repa */ {{vt,0}, {vt,1}, {vs,0}, {vs,1}} /* repb */ }; uint64_t mdmx_shuffle(sim_cpu *cpu, address_word cia, int shop, uint64_t op1, uint64_t op2) { uint64_t result = 0; int i, s; int op; if ((shop & 0x3) == 0x1) /* QH format. */ { op = shop >> 2; s = 0; for (i = 0; i < 4; i++) { uint64_t v; switch (qh_shuffle[op][i].source) { case vs: v = op1; break; case vt: v = op2; break; default: Unpredictable (); v = 0; } result |= (((v >> 16*qh_shuffle[op][i].index) & 0xFFFF) << s); s += 16; } } else if ((shop & 0x1) == 0x0) /* OB format. */ { op = shop >> 1; s = 0; for (i = 0; i < 8; i++) { uint8_t b; unsigned int ishift = 8*ob_shuffle[op][i].index; switch (ob_shuffle[op][i].source) { case vs: b = (op1 >> ishift) & 0xFF; break; case ss: b = ((op1 >> ishift) & 0x80) ? 0xFF : 0; break; case vt: b = (op2 >> ishift) & 0xFF; break; default: Unpredictable (); b = 0; } result |= ((uint64_t)b << s); s += 8; } } else Unpredictable (); return result; }