/* Function summary pass.
Copyright (C) 2003-2020 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* Analysis of function bodies used by inter-procedural passes
We estimate for each function
- function body size and size after specializing into given context
- average function execution time in a given context
- function frame size
For each call
- call statement size, time and how often the parameters change
ipa_fn_summary data structures store above information locally (i.e.
parameters of the function itself) and globally (i.e. parameters of
the function created by applying all the inline decisions already
present in the callgraph).
We provide access to the ipa_fn_summary data structure and
basic logic updating the parameters when inlining is performed.
The summaries are context sensitive. Context means
1) partial assignment of known constant values of operands
2) whether function is inlined into the call or not.
It is easy to add more variants. To represent function size and time
that depends on context (i.e. it is known to be optimized away when
context is known either by inlining or from IP-CP and cloning),
we use predicates.
estimate_edge_size_and_time can be used to query
function size/time in the given context. ipa_merge_fn_summary_after_inlining merges
properties of caller and callee after inlining.
Finally pass_inline_parameters is exported. This is used to drive
computation of function parameters used by the early inliner. IPA
inlined performs analysis via its analyze_function method. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "tree-streamer.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "print-tree.h"
#include "tree-inline.h"
#include "gimple-pretty-print.h"
#include "cfganal.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "symbol-summary.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "ipa-utils.h"
#include "cfgexpand.h"
#include "gimplify.h"
#include "stringpool.h"
#include "attribs.h"
#include "tree-into-ssa.h"
/* Summaries. */
fast_function_summary *ipa_fn_summaries;
fast_function_summary *ipa_size_summaries;
fast_call_summary *ipa_call_summaries;
/* Edge predicates goes here. */
static object_allocator edge_predicate_pool ("edge predicates");
/* Dump IPA hints. */
void
ipa_dump_hints (FILE *f, ipa_hints hints)
{
if (!hints)
return;
fprintf (f, "IPA hints:");
if (hints & INLINE_HINT_indirect_call)
{
hints &= ~INLINE_HINT_indirect_call;
fprintf (f, " indirect_call");
}
if (hints & INLINE_HINT_loop_iterations)
{
hints &= ~INLINE_HINT_loop_iterations;
fprintf (f, " loop_iterations");
}
if (hints & INLINE_HINT_loop_stride)
{
hints &= ~INLINE_HINT_loop_stride;
fprintf (f, " loop_stride");
}
if (hints & INLINE_HINT_same_scc)
{
hints &= ~INLINE_HINT_same_scc;
fprintf (f, " same_scc");
}
if (hints & INLINE_HINT_in_scc)
{
hints &= ~INLINE_HINT_in_scc;
fprintf (f, " in_scc");
}
if (hints & INLINE_HINT_cross_module)
{
hints &= ~INLINE_HINT_cross_module;
fprintf (f, " cross_module");
}
if (hints & INLINE_HINT_declared_inline)
{
hints &= ~INLINE_HINT_declared_inline;
fprintf (f, " declared_inline");
}
if (hints & INLINE_HINT_known_hot)
{
hints &= ~INLINE_HINT_known_hot;
fprintf (f, " known_hot");
}
gcc_assert (!hints);
}
/* Record SIZE and TIME to SUMMARY.
The accounted code will be executed when EXEC_PRED is true.
When NONCONST_PRED is false the code will evaluate to constant and
will get optimized out in specialized clones of the function.
If CALL is true account to call_size_time_table rather than
size_time_table. */
void
ipa_fn_summary::account_size_time (int size, sreal time,
const predicate &exec_pred,
const predicate &nonconst_pred_in,
bool call)
{
size_time_entry *e;
bool found = false;
int i;
predicate nonconst_pred;
vec *table = call
? call_size_time_table : size_time_table;
if (exec_pred == false)
return;
nonconst_pred = nonconst_pred_in & exec_pred;
if (nonconst_pred == false)
return;
/* We need to create initial empty unconditional clause, but otherwise
we don't need to account empty times and sizes. */
if (!size && time == 0 && table)
return;
/* Only for calls we are unaccounting what we previously recorded. */
gcc_checking_assert (time >= 0 || call);
for (i = 0; vec_safe_iterate (table, i, &e); i++)
if (e->exec_predicate == exec_pred
&& e->nonconst_predicate == nonconst_pred)
{
found = true;
break;
}
if (i == max_size_time_table_size)
{
i = 0;
found = true;
e = &(*table)[0];
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"\t\tReached limit on number of entries, "
"ignoring the predicate.");
}
if (dump_file && (dump_flags & TDF_DETAILS) && (time != 0 || size))
{
fprintf (dump_file,
"\t\tAccounting size:%3.2f, time:%3.2f on %spredicate exec:",
((double) size) / ipa_fn_summary::size_scale,
(time.to_double ()), found ? "" : "new ");
exec_pred.dump (dump_file, conds, 0);
if (exec_pred != nonconst_pred)
{
fprintf (dump_file, " nonconst:");
nonconst_pred.dump (dump_file, conds);
}
else
fprintf (dump_file, "\n");
}
if (!found)
{
class size_time_entry new_entry;
new_entry.size = size;
new_entry.time = time;
new_entry.exec_predicate = exec_pred;
new_entry.nonconst_predicate = nonconst_pred;
if (call)
vec_safe_push (call_size_time_table, new_entry);
else
vec_safe_push (size_time_table, new_entry);
}
else
{
e->size += size;
e->time += time;
/* FIXME: PR bootstrap/92653 gcc_checking_assert (e->time >= -1); */
/* Tolerate small roundoff issues. */
if (e->time < 0)
e->time = 0;
}
}
/* We proved E to be unreachable, redirect it to __builtin_unreachable. */
static struct cgraph_edge *
redirect_to_unreachable (struct cgraph_edge *e)
{
struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
struct cgraph_node *target = cgraph_node::get_create
(builtin_decl_implicit (BUILT_IN_UNREACHABLE));
if (e->speculative)
e = cgraph_edge::resolve_speculation (e, target->decl);
else if (!e->callee)
e = cgraph_edge::make_direct (e, target);
else
e->redirect_callee (target);
class ipa_call_summary *es = ipa_call_summaries->get (e);
e->inline_failed = CIF_UNREACHABLE;
e->count = profile_count::zero ();
es->call_stmt_size = 0;
es->call_stmt_time = 0;
if (callee)
callee->remove_symbol_and_inline_clones ();
return e;
}
/* Set predicate for edge E. */
static void
edge_set_predicate (struct cgraph_edge *e, predicate *predicate)
{
/* If the edge is determined to be never executed, redirect it
to BUILTIN_UNREACHABLE to make it clear to IPA passes the call will
be optimized out. */
if (predicate && *predicate == false
/* When handling speculative edges, we need to do the redirection
just once. Do it always on the direct edge, so we do not
attempt to resolve speculation while duplicating the edge. */
&& (!e->speculative || e->callee))
e = redirect_to_unreachable (e);
class ipa_call_summary *es = ipa_call_summaries->get (e);
if (predicate && *predicate != true)
{
if (!es->predicate)
es->predicate = edge_predicate_pool.allocate ();
*es->predicate = *predicate;
}
else
{
if (es->predicate)
edge_predicate_pool.remove (es->predicate);
es->predicate = NULL;
}
}
/* Set predicate for hint *P. */
static void
set_hint_predicate (predicate **p, predicate new_predicate)
{
if (new_predicate == false || new_predicate == true)
{
if (*p)
edge_predicate_pool.remove (*p);
*p = NULL;
}
else
{
if (!*p)
*p = edge_predicate_pool.allocate ();
**p = new_predicate;
}
}
/* Compute what conditions may or may not hold given information about
parameters. RET_CLAUSE returns truths that may hold in a specialized copy,
while RET_NONSPEC_CLAUSE returns truths that may hold in an nonspecialized
copy when called in a given context. It is a bitmask of conditions. Bit
0 means that condition is known to be false, while bit 1 means that condition
may or may not be true. These differs - for example NOT_INLINED condition
is always false in the second and also builtin_constant_p tests cannot use
the fact that parameter is indeed a constant.
KNOWN_VALS is partial mapping of parameters of NODE to constant values.
KNOWN_AGGS is a vector of aggregate known offset/value set for each
parameter. Return clause of possible truths. When INLINE_P is true, assume
that we are inlining.
ERROR_MARK means compile time invariant. */
static void
evaluate_conditions_for_known_args (struct cgraph_node *node,
bool inline_p,
vec known_vals,
vec known_value_ranges,
vec known_aggs,
clause_t *ret_clause,
clause_t *ret_nonspec_clause)
{
clause_t clause = inline_p ? 0 : 1 << predicate::not_inlined_condition;
clause_t nonspec_clause = 1 << predicate::not_inlined_condition;
class ipa_fn_summary *info = ipa_fn_summaries->get (node);
int i;
struct condition *c;
for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
{
tree val = NULL;
tree res;
int j;
struct expr_eval_op *op;
/* We allow call stmt to have fewer arguments than the callee function
(especially for K&R style programs). So bound check here (we assume
known_aggs vector, if non-NULL, has the same length as
known_vals). */
gcc_checking_assert (!known_aggs.length () || !known_vals.length ()
|| (known_vals.length () == known_aggs.length ()));
if (c->agg_contents)
{
struct ipa_agg_value_set *agg;
if (c->code == predicate::changed
&& !c->by_ref
&& c->operand_num < (int)known_vals.length ()
&& (known_vals[c->operand_num] == error_mark_node))
continue;
if (c->operand_num < (int)known_aggs.length ())
{
agg = &known_aggs[c->operand_num];
val = ipa_find_agg_cst_for_param (agg,
c->operand_num
< (int) known_vals.length ()
? known_vals[c->operand_num]
: NULL,
c->offset, c->by_ref);
}
else
val = NULL_TREE;
}
else if (c->operand_num < (int) known_vals.length ())
{
val = known_vals[c->operand_num];
if (val == error_mark_node && c->code != predicate::changed)
val = NULL_TREE;
}
if (!val
&& (c->code == predicate::changed
|| c->code == predicate::is_not_constant))
{
clause |= 1 << (i + predicate::first_dynamic_condition);
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
}
if (c->code == predicate::changed)
{
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
}
if (c->code == predicate::is_not_constant)
{
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
}
if (val && TYPE_SIZE (c->type) == TYPE_SIZE (TREE_TYPE (val)))
{
if (c->type != TREE_TYPE (val))
val = fold_unary (VIEW_CONVERT_EXPR, c->type, val);
for (j = 0; vec_safe_iterate (c->param_ops, j, &op); j++)
{
if (!val)
break;
if (!op->val[0])
val = fold_unary (op->code, op->type, val);
else if (!op->val[1])
val = fold_binary (op->code, op->type,
op->index ? op->val[0] : val,
op->index ? val : op->val[0]);
else if (op->index == 0)
val = fold_ternary (op->code, op->type,
val, op->val[0], op->val[1]);
else if (op->index == 1)
val = fold_ternary (op->code, op->type,
op->val[0], val, op->val[1]);
else if (op->index == 2)
val = fold_ternary (op->code, op->type,
op->val[0], op->val[1], val);
else
val = NULL_TREE;
}
res = val
? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
: NULL;
if (res && integer_zerop (res))
continue;
if (res && integer_onep (res))
{
clause |= 1 << (i + predicate::first_dynamic_condition);
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
}
}
if (c->operand_num < (int) known_value_ranges.length ()
&& !c->agg_contents
&& !known_value_ranges[c->operand_num].undefined_p ()
&& !known_value_ranges[c->operand_num].varying_p ()
&& TYPE_SIZE (c->type)
== TYPE_SIZE (known_value_ranges[c->operand_num].type ())
&& (!val || TREE_CODE (val) != INTEGER_CST))
{
value_range vr = known_value_ranges[c->operand_num];
if (!useless_type_conversion_p (c->type, vr.type ()))
{
value_range res;
range_fold_unary_expr (&res, NOP_EXPR,
c->type, &vr, vr.type ());
vr = res;
}
tree type = c->type;
for (j = 0; vec_safe_iterate (c->param_ops, j, &op); j++)
{
if (vr.varying_p () || vr.undefined_p ())
break;
value_range res;
if (!op->val[0])
range_fold_unary_expr (&res, op->code, op->type, &vr, type);
else if (!op->val[1])
{
value_range op0 (op->val[0], op->val[0]);
range_fold_binary_expr (&res, op->code, op->type,
op->index ? &op0 : &vr,
op->index ? &vr : &op0);
}
else
gcc_unreachable ();
type = op->type;
vr = res;
}
if (!vr.varying_p () && !vr.undefined_p ())
{
value_range res;
value_range val_vr (c->val, c->val);
range_fold_binary_expr (&res, c->code, boolean_type_node,
&vr,
&val_vr);
if (res.zero_p ())
continue;
}
}
clause |= 1 << (i + predicate::first_dynamic_condition);
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
}
*ret_clause = clause;
if (ret_nonspec_clause)
*ret_nonspec_clause = nonspec_clause;
}
/* Return true if VRP will be exectued on the function.
We do not want to anticipate optimizations that will not happen.
FIXME: This can be confused with -fdisable and debug counters and thus
it should not be used for correctness (only to make heuristics work).
This means that inliner should do its own optimizations of expressions
that it predicts to be constant so wrong code can not be triggered by
builtin_constant_p. */
static bool
vrp_will_run_p (struct cgraph_node *node)
{
return (opt_for_fn (node->decl, optimize)
&& !opt_for_fn (node->decl, optimize_debug)
&& opt_for_fn (node->decl, flag_tree_vrp));
}
/* Similarly about FRE. */
static bool
fre_will_run_p (struct cgraph_node *node)
{
return (opt_for_fn (node->decl, optimize)
&& !opt_for_fn (node->decl, optimize_debug)
&& opt_for_fn (node->decl, flag_tree_fre));
}
/* Work out what conditions might be true at invocation of E.
Compute costs for inlined edge if INLINE_P is true.
Return in CLAUSE_PTR the evaluated conditions and in NONSPEC_CLAUSE_PTR
(if non-NULL) conditions evaluated for nonspecialized clone called
in a given context.
KNOWN_VALS_PTR and KNOWN_AGGS_PTR must be non-NULL and will be filled by
known constant and aggregate values of parameters.
KNOWN_CONTEXT_PTR, if non-NULL, will be filled by polymorphic call contexts
of parameter used by a polymorphic call. */
void
evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
clause_t *clause_ptr,
clause_t *nonspec_clause_ptr,
vec *known_vals_ptr,
vec
*known_contexts_ptr,
vec *known_aggs_ptr)
{
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
class ipa_fn_summary *info = ipa_fn_summaries->get (callee);
auto_vec known_value_ranges;
class ipa_edge_args *args;
if (clause_ptr)
*clause_ptr = inline_p ? 0 : 1 << predicate::not_inlined_condition;
if (ipa_node_params_sum
&& !e->call_stmt_cannot_inline_p
&& (info->conds || known_contexts_ptr)
&& (args = IPA_EDGE_REF (e)) != NULL)
{
struct cgraph_node *caller;
class ipa_node_params *caller_parms_info, *callee_pi = NULL;
class ipa_call_summary *es = ipa_call_summaries->get (e);
int i, count = ipa_get_cs_argument_count (args);
if (count)
{
if (e->caller->inlined_to)
caller = e->caller->inlined_to;
else
caller = e->caller;
caller_parms_info = IPA_NODE_REF (caller);
callee_pi = IPA_NODE_REF (callee);
/* Watch for thunks. */
if (callee_pi)
/* Watch for variadic functions. */
count = MIN (count, ipa_get_param_count (callee_pi));
}
if (callee_pi)
for (i = 0; i < count; i++)
{
struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
if (ipa_is_param_used_by_indirect_call (callee_pi, i)
|| ipa_is_param_used_by_ipa_predicates (callee_pi, i))
{
/* Determine if we know constant value of the parameter. */
tree cst = ipa_value_from_jfunc (caller_parms_info, jf,
ipa_get_type (callee_pi, i));
if (!cst && e->call_stmt
&& i < (int)gimple_call_num_args (e->call_stmt))
{
cst = gimple_call_arg (e->call_stmt, i);
if (!is_gimple_min_invariant (cst))
cst = NULL;
}
if (cst)
{
gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
if (!known_vals_ptr->length ())
vec_safe_grow_cleared (known_vals_ptr, count);
(*known_vals_ptr)[i] = cst;
}
else if (inline_p && !es->param[i].change_prob)
{
if (!known_vals_ptr->length ())
vec_safe_grow_cleared (known_vals_ptr, count);
(*known_vals_ptr)[i] = error_mark_node;
}
/* If we failed to get simple constant, try value range. */
if ((!cst || TREE_CODE (cst) != INTEGER_CST)
&& vrp_will_run_p (caller)
&& ipa_is_param_used_by_ipa_predicates (callee_pi, i))
{
value_range vr
= ipa_value_range_from_jfunc (caller_parms_info, e, jf,
ipa_get_type (callee_pi,
i));
if (!vr.undefined_p () && !vr.varying_p ())
{
if (!known_value_ranges.length ())
known_value_ranges.safe_grow_cleared (count);
known_value_ranges[i] = vr;
}
}
/* Determine known aggregate values. */
if (fre_will_run_p (caller))
{
ipa_agg_value_set agg
= ipa_agg_value_set_from_jfunc (caller_parms_info,
caller, &jf->agg);
if (agg.items.length ())
{
if (!known_aggs_ptr->length ())
vec_safe_grow_cleared (known_aggs_ptr, count);
(*known_aggs_ptr)[i] = agg;
}
}
}
/* For calls used in polymorphic calls we further determine
polymorphic call context. */
if (known_contexts_ptr
&& ipa_is_param_used_by_polymorphic_call (callee_pi, i))
{
ipa_polymorphic_call_context
ctx = ipa_context_from_jfunc (caller_parms_info, e, i, jf);
if (!ctx.useless_p ())
{
if (!known_contexts_ptr->length ())
known_contexts_ptr->safe_grow_cleared (count);
(*known_contexts_ptr)[i]
= ipa_context_from_jfunc (caller_parms_info, e, i, jf);
}
}
}
else
gcc_assert (!count || callee->thunk.thunk_p);
}
else if (e->call_stmt && !e->call_stmt_cannot_inline_p && info->conds)
{
int i, count = (int)gimple_call_num_args (e->call_stmt);
for (i = 0; i < count; i++)
{
tree cst = gimple_call_arg (e->call_stmt, i);
if (!is_gimple_min_invariant (cst))
cst = NULL;
if (cst)
{
if (!known_vals_ptr->length ())
vec_safe_grow_cleared (known_vals_ptr, count);
(*known_vals_ptr)[i] = cst;
}
}
}
evaluate_conditions_for_known_args (callee, inline_p,
*known_vals_ptr,
known_value_ranges,
*known_aggs_ptr,
clause_ptr,
nonspec_clause_ptr);
}
/* Allocate the function summary. */
static void
ipa_fn_summary_alloc (void)
{
gcc_checking_assert (!ipa_fn_summaries);
ipa_size_summaries = new ipa_size_summary_t (symtab);
ipa_fn_summaries = ipa_fn_summary_t::create_ggc (symtab);
ipa_call_summaries = new ipa_call_summary_t (symtab);
}
ipa_call_summary::~ipa_call_summary ()
{
if (predicate)
edge_predicate_pool.remove (predicate);
param.release ();
}
ipa_fn_summary::~ipa_fn_summary ()
{
if (loop_iterations)
edge_predicate_pool.remove (loop_iterations);
if (loop_stride)
edge_predicate_pool.remove (loop_stride);
vec_free (conds);
vec_free (size_time_table);
vec_free (call_size_time_table);
}
void
ipa_fn_summary_t::remove_callees (cgraph_node *node)
{
cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
ipa_call_summaries->remove (e);
for (e = node->indirect_calls; e; e = e->next_callee)
ipa_call_summaries->remove (e);
}
/* Same as remap_predicate_after_duplication but handle hint predicate *P.
Additionally care about allocating new memory slot for updated predicate
and set it to NULL when it becomes true or false (and thus uninteresting).
*/
static void
remap_hint_predicate_after_duplication (predicate **p,
clause_t possible_truths)
{
predicate new_predicate;
if (!*p)
return;
new_predicate = (*p)->remap_after_duplication (possible_truths);
/* We do not want to free previous predicate; it is used by node origin. */
*p = NULL;
set_hint_predicate (p, new_predicate);
}
/* Hook that is called by cgraph.c when a node is duplicated. */
void
ipa_fn_summary_t::duplicate (cgraph_node *src,
cgraph_node *dst,
ipa_fn_summary *,
ipa_fn_summary *info)
{
new (info) ipa_fn_summary (*ipa_fn_summaries->get (src));
/* TODO: as an optimization, we may avoid copying conditions
that are known to be false or true. */
info->conds = vec_safe_copy (info->conds);
/* When there are any replacements in the function body, see if we can figure
out that something was optimized out. */
if (ipa_node_params_sum && dst->clone.tree_map)
{
vec *entry = info->size_time_table;
/* Use SRC parm info since it may not be copied yet. */
class ipa_node_params *parms_info = IPA_NODE_REF (src);
vec known_vals = vNULL;
int count = ipa_get_param_count (parms_info);
int i, j;
clause_t possible_truths;
predicate true_pred = true;
size_time_entry *e;
int optimized_out_size = 0;
bool inlined_to_p = false;
struct cgraph_edge *edge, *next;
info->size_time_table = 0;
known_vals.safe_grow_cleared (count);
for (i = 0; i < count; i++)
{
struct ipa_replace_map *r;
for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
{
if (r->parm_num == i)
{
known_vals[i] = r->new_tree;
break;
}
}
}
evaluate_conditions_for_known_args (dst, false,
known_vals,
vNULL,
vNULL,
&possible_truths,
/* We are going to specialize,
so ignore nonspec truths. */
NULL);
known_vals.release ();
info->account_size_time (0, 0, true_pred, true_pred);
/* Remap size_time vectors.
Simplify the predicate by pruning out alternatives that are known
to be false.
TODO: as on optimization, we can also eliminate conditions known
to be true. */
for (i = 0; vec_safe_iterate (entry, i, &e); i++)
{
predicate new_exec_pred;
predicate new_nonconst_pred;
new_exec_pred = e->exec_predicate.remap_after_duplication
(possible_truths);
new_nonconst_pred = e->nonconst_predicate.remap_after_duplication
(possible_truths);
if (new_exec_pred == false || new_nonconst_pred == false)
optimized_out_size += e->size;
else
info->account_size_time (e->size, e->time, new_exec_pred,
new_nonconst_pred);
}
/* Remap edge predicates with the same simplification as above.
Also copy constantness arrays. */
for (edge = dst->callees; edge; edge = next)
{
predicate new_predicate;
class ipa_call_summary *es = ipa_call_summaries->get (edge);
next = edge->next_callee;
if (!edge->inline_failed)
inlined_to_p = true;
if (!es->predicate)
continue;
new_predicate = es->predicate->remap_after_duplication
(possible_truths);
if (new_predicate == false && *es->predicate != false)
optimized_out_size += es->call_stmt_size * ipa_fn_summary::size_scale;
edge_set_predicate (edge, &new_predicate);
}
/* Remap indirect edge predicates with the same simplification as above.
Also copy constantness arrays. */
for (edge = dst->indirect_calls; edge; edge = next)
{
predicate new_predicate;
class ipa_call_summary *es = ipa_call_summaries->get (edge);
next = edge->next_callee;
gcc_checking_assert (edge->inline_failed);
if (!es->predicate)
continue;
new_predicate = es->predicate->remap_after_duplication
(possible_truths);
if (new_predicate == false && *es->predicate != false)
optimized_out_size += es->call_stmt_size * ipa_fn_summary::size_scale;
edge_set_predicate (edge, &new_predicate);
}
remap_hint_predicate_after_duplication (&info->loop_iterations,
possible_truths);
remap_hint_predicate_after_duplication (&info->loop_stride,
possible_truths);
/* If inliner or someone after inliner will ever start producing
non-trivial clones, we will get trouble with lack of information
about updating self sizes, because size vectors already contains
sizes of the callees. */
gcc_assert (!inlined_to_p || !optimized_out_size);
}
else
{
info->size_time_table = vec_safe_copy (info->size_time_table);
if (info->loop_iterations)
{
predicate p = *info->loop_iterations;
info->loop_iterations = NULL;
set_hint_predicate (&info->loop_iterations, p);
}
if (info->loop_stride)
{
predicate p = *info->loop_stride;
info->loop_stride = NULL;
set_hint_predicate (&info->loop_stride, p);
}
}
if (!dst->inlined_to)
ipa_update_overall_fn_summary (dst);
}
/* Hook that is called by cgraph.c when a node is duplicated. */
void
ipa_call_summary_t::duplicate (struct cgraph_edge *src,
struct cgraph_edge *dst,
class ipa_call_summary *srcinfo,
class ipa_call_summary *info)
{
new (info) ipa_call_summary (*srcinfo);
info->predicate = NULL;
edge_set_predicate (dst, srcinfo->predicate);
info->param = srcinfo->param.copy ();
if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
{
info->call_stmt_size -= (eni_size_weights.indirect_call_cost
- eni_size_weights.call_cost);
info->call_stmt_time -= (eni_time_weights.indirect_call_cost
- eni_time_weights.call_cost);
}
}
/* Dump edge summaries associated to NODE and recursively to all clones.
Indent by INDENT. */
static void
dump_ipa_call_summary (FILE *f, int indent, struct cgraph_node *node,
class ipa_fn_summary *info)
{
struct cgraph_edge *edge;
for (edge = node->callees; edge; edge = edge->next_callee)
{
class ipa_call_summary *es = ipa_call_summaries->get (edge);
struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
int i;
fprintf (f,
"%*s%s %s\n%*s freq:%4.2f",
indent, "", callee->dump_name (),
!edge->inline_failed
? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
indent, "", edge->sreal_frequency ().to_double ());
if (cross_module_call_p (edge))
fprintf (f, " cross module");
if (es)
fprintf (f, " loop depth:%2i size:%2i time: %2i",
es->loop_depth, es->call_stmt_size, es->call_stmt_time);
ipa_fn_summary *s = ipa_fn_summaries->get (callee);
ipa_size_summary *ss = ipa_size_summaries->get (callee);
if (s != NULL)
fprintf (f, " callee size:%2i stack:%2i",
(int) (ss->size / ipa_fn_summary::size_scale),
(int) s->estimated_stack_size);
if (es && es->predicate)
{
fprintf (f, " predicate: ");
es->predicate->dump (f, info->conds);
}
else
fprintf (f, "\n");
if (es && es->param.exists ())
for (i = 0; i < (int) es->param.length (); i++)
{
int prob = es->param[i].change_prob;
if (!prob)
fprintf (f, "%*s op%i is compile time invariant\n",
indent + 2, "", i);
else if (prob != REG_BR_PROB_BASE)
fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
prob * 100.0 / REG_BR_PROB_BASE);
}
if (!edge->inline_failed)
{
ipa_size_summary *ss = ipa_size_summaries->get (callee);
fprintf (f, "%*sStack frame offset %i, callee self size %i\n",
indent + 2, "",
(int) ipa_get_stack_frame_offset (callee),
(int) ss->estimated_self_stack_size);
dump_ipa_call_summary (f, indent + 2, callee, info);
}
}
for (edge = node->indirect_calls; edge; edge = edge->next_callee)
{
class ipa_call_summary *es = ipa_call_summaries->get (edge);
fprintf (f, "%*sindirect call loop depth:%2i freq:%4.2f size:%2i"
" time: %2i",
indent, "",
es->loop_depth,
edge->sreal_frequency ().to_double (), es->call_stmt_size,
es->call_stmt_time);
if (es->predicate)
{
fprintf (f, "predicate: ");
es->predicate->dump (f, info->conds);
}
else
fprintf (f, "\n");
}
}
void
ipa_dump_fn_summary (FILE *f, struct cgraph_node *node)
{
if (node->definition)
{
class ipa_fn_summary *s = ipa_fn_summaries->get (node);
class ipa_size_summary *ss = ipa_size_summaries->get (node);
if (s != NULL)
{
size_time_entry *e;
int i;
fprintf (f, "IPA function summary for %s", node->dump_name ());
if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
fprintf (f, " always_inline");
if (s->inlinable)
fprintf (f, " inlinable");
if (s->fp_expressions)
fprintf (f, " fp_expression");
fprintf (f, "\n global time: %f\n", s->time.to_double ());
fprintf (f, " self size: %i\n", ss->self_size);
fprintf (f, " global size: %i\n", ss->size);
fprintf (f, " min size: %i\n", s->min_size);
fprintf (f, " self stack: %i\n",
(int) ss->estimated_self_stack_size);
fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
if (s->growth)
fprintf (f, " estimated growth:%i\n", (int) s->growth);
if (s->scc_no)
fprintf (f, " In SCC: %i\n", (int) s->scc_no);
for (i = 0; vec_safe_iterate (s->size_time_table, i, &e); i++)
{
fprintf (f, " size:%f, time:%f",
(double) e->size / ipa_fn_summary::size_scale,
e->time.to_double ());
if (e->exec_predicate != true)
{
fprintf (f, ", executed if:");
e->exec_predicate.dump (f, s->conds, 0);
}
if (e->exec_predicate != e->nonconst_predicate)
{
fprintf (f, ", nonconst if:");
e->nonconst_predicate.dump (f, s->conds, 0);
}
fprintf (f, "\n");
}
if (s->loop_iterations)
{
fprintf (f, " loop iterations:");
s->loop_iterations->dump (f, s->conds);
}
if (s->loop_stride)
{
fprintf (f, " loop stride:");
s->loop_stride->dump (f, s->conds);
}
fprintf (f, " calls:\n");
dump_ipa_call_summary (f, 4, node, s);
fprintf (f, "\n");
}
else
fprintf (f, "IPA summary for %s is missing.\n", node->dump_name ());
}
}
DEBUG_FUNCTION void
ipa_debug_fn_summary (struct cgraph_node *node)
{
ipa_dump_fn_summary (stderr, node);
}
void
ipa_dump_fn_summaries (FILE *f)
{
struct cgraph_node *node;
FOR_EACH_DEFINED_FUNCTION (node)
if (!node->inlined_to)
ipa_dump_fn_summary (f, node);
}
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
boolean variable pointed to by DATA. */
static bool
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
void *data)
{
bool *b = (bool *) data;
*b = true;
return true;
}
/* If OP refers to value of function parameter, return the corresponding
parameter. If non-NULL, the size of the memory load (or the SSA_NAME of the
PARM_DECL) will be stored to *SIZE_P in that case too. */
static tree
unmodified_parm_1 (ipa_func_body_info *fbi, gimple *stmt, tree op,
poly_int64 *size_p)
{
/* SSA_NAME referring to parm default def? */
if (TREE_CODE (op) == SSA_NAME
&& SSA_NAME_IS_DEFAULT_DEF (op)
&& TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
{
if (size_p)
*size_p = tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (op)));
return SSA_NAME_VAR (op);
}
/* Non-SSA parm reference? */
if (TREE_CODE (op) == PARM_DECL)
{
bool modified = false;
ao_ref refd;
ao_ref_init (&refd, op);
int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
mark_modified, &modified, NULL, NULL,
fbi->aa_walk_budget + 1);
if (walked < 0)
{
fbi->aa_walk_budget = 0;
return NULL_TREE;
}
if (!modified)
{
if (size_p)
*size_p = tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (op)));
return op;
}
}
return NULL_TREE;
}
/* If OP refers to value of function parameter, return the corresponding
parameter. Also traverse chains of SSA register assignments. If non-NULL,
the size of the memory load (or the SSA_NAME of the PARM_DECL) will be
stored to *SIZE_P in that case too. */
static tree
unmodified_parm (ipa_func_body_info *fbi, gimple *stmt, tree op,
poly_int64 *size_p)
{
tree res = unmodified_parm_1 (fbi, stmt, op, size_p);
if (res)
return res;
if (TREE_CODE (op) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (op)
&& gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
return unmodified_parm (fbi, SSA_NAME_DEF_STMT (op),
gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)),
size_p);
return NULL_TREE;
}
/* If OP refers to a value of a function parameter or value loaded from an
aggregate passed to a parameter (either by value or reference), return TRUE
and store the number of the parameter to *INDEX_P, the access size into
*SIZE_P, and information whether and how it has been loaded from an
aggregate into *AGGPOS. INFO describes the function parameters, STMT is the
statement in which OP is used or loaded. */
static bool
unmodified_parm_or_parm_agg_item (struct ipa_func_body_info *fbi,
gimple *stmt, tree op, int *index_p,
poly_int64 *size_p,
struct agg_position_info *aggpos)
{
tree res = unmodified_parm_1 (fbi, stmt, op, size_p);
gcc_checking_assert (aggpos);
if (res)
{
*index_p = ipa_get_param_decl_index (fbi->info, res);
if (*index_p < 0)
return false;
aggpos->agg_contents = false;
aggpos->by_ref = false;
return true;
}
if (TREE_CODE (op) == SSA_NAME)
{
if (SSA_NAME_IS_DEFAULT_DEF (op)
|| !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
return false;
stmt = SSA_NAME_DEF_STMT (op);
op = gimple_assign_rhs1 (stmt);
if (!REFERENCE_CLASS_P (op))
return unmodified_parm_or_parm_agg_item (fbi, stmt, op, index_p, size_p,
aggpos);
}
aggpos->agg_contents = true;
return ipa_load_from_parm_agg (fbi, fbi->info->descriptors,
stmt, op, index_p, &aggpos->offset,
size_p, &aggpos->by_ref);
}
/* See if statement might disappear after inlining.
0 - means not eliminated
1 - half of statements goes away
2 - for sure it is eliminated.
We are not terribly sophisticated, basically looking for simple abstraction
penalty wrappers. */
static int
eliminated_by_inlining_prob (ipa_func_body_info *fbi, gimple *stmt)
{
enum gimple_code code = gimple_code (stmt);
enum tree_code rhs_code;
if (!optimize)
return 0;
switch (code)
{
case GIMPLE_RETURN:
return 2;
case GIMPLE_ASSIGN:
if (gimple_num_ops (stmt) != 2)
return 0;
rhs_code = gimple_assign_rhs_code (stmt);
/* Casts of parameters, loads from parameters passed by reference
and stores to return value or parameters are often free after
inlining due to SRA and further combining.
Assume that half of statements goes away. */
if (CONVERT_EXPR_CODE_P (rhs_code)
|| rhs_code == VIEW_CONVERT_EXPR
|| rhs_code == ADDR_EXPR
|| gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
{
tree rhs = gimple_assign_rhs1 (stmt);
tree lhs = gimple_assign_lhs (stmt);
tree inner_rhs = get_base_address (rhs);
tree inner_lhs = get_base_address (lhs);
bool rhs_free = false;
bool lhs_free = false;
if (!inner_rhs)
inner_rhs = rhs;
if (!inner_lhs)
inner_lhs = lhs;
/* Reads of parameter are expected to be free. */
if (unmodified_parm (fbi, stmt, inner_rhs, NULL))
rhs_free = true;
/* Match expressions of form &this->field. Those will most likely
combine with something upstream after inlining. */
else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
{
tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
if (TREE_CODE (op) == PARM_DECL)
rhs_free = true;
else if (TREE_CODE (op) == MEM_REF
&& unmodified_parm (fbi, stmt, TREE_OPERAND (op, 0),
NULL))
rhs_free = true;
}
/* When parameter is not SSA register because its address is taken
and it is just copied into one, the statement will be completely
free after inlining (we will copy propagate backward). */
if (rhs_free && is_gimple_reg (lhs))
return 2;
/* Reads of parameters passed by reference
expected to be free (i.e. optimized out after inlining). */
if (TREE_CODE (inner_rhs) == MEM_REF
&& unmodified_parm (fbi, stmt, TREE_OPERAND (inner_rhs, 0), NULL))
rhs_free = true;
/* Copying parameter passed by reference into gimple register is
probably also going to copy propagate, but we can't be quite
sure. */
if (rhs_free && is_gimple_reg (lhs))
lhs_free = true;
/* Writes to parameters, parameters passed by value and return value
(either directly or passed via invisible reference) are free.
TODO: We ought to handle testcase like
struct a {int a,b;};
struct a
returnstruct (void)
{
struct a a ={1,2};
return a;
}
This translate into:
returnstruct ()
{
int a$b;
int a$a;
struct a a;
struct a D.2739;
:
D.2739.a = 1;
D.2739.b = 2;
return D.2739;
}
For that we either need to copy ipa-split logic detecting writes
to return value. */
if (TREE_CODE (inner_lhs) == PARM_DECL
|| TREE_CODE (inner_lhs) == RESULT_DECL
|| (TREE_CODE (inner_lhs) == MEM_REF
&& (unmodified_parm (fbi, stmt, TREE_OPERAND (inner_lhs, 0),
NULL)
|| (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
&& SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
&& TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
(inner_lhs,
0))) == RESULT_DECL))))
lhs_free = true;
if (lhs_free
&& (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
rhs_free = true;
if (lhs_free && rhs_free)
return 1;
}
return 0;
default:
return 0;
}
}
/* Analyze EXPR if it represents a series of simple operations performed on
a function parameter and return true if so. FBI, STMT, EXPR, INDEX_P and
AGGPOS have the same meaning like in unmodified_parm_or_parm_agg_item.
Type of the parameter or load from an aggregate via the parameter is
stored in *TYPE_P. Operations on the parameter are recorded to
PARAM_OPS_P if it is not NULL. */
static bool
decompose_param_expr (struct ipa_func_body_info *fbi,
gimple *stmt, tree expr,
int *index_p, tree *type_p,
struct agg_position_info *aggpos,
expr_eval_ops *param_ops_p = NULL)
{
int op_limit = opt_for_fn (fbi->node->decl, param_ipa_max_param_expr_ops);
int op_count = 0;
if (param_ops_p)
*param_ops_p = NULL;
while (true)
{
expr_eval_op eval_op;
unsigned rhs_count;
unsigned cst_count = 0;
if (unmodified_parm_or_parm_agg_item (fbi, stmt, expr, index_p, NULL,
aggpos))
{
tree type = TREE_TYPE (expr);
if (aggpos->agg_contents)
{
/* Stop if containing bit-field. */
if (TREE_CODE (expr) == BIT_FIELD_REF
|| contains_bitfld_component_ref_p (expr))
break;
}
*type_p = type;
return true;
}
if (TREE_CODE (expr) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (expr))
break;
if (!is_gimple_assign (stmt = SSA_NAME_DEF_STMT (expr)))
break;
switch (gimple_assign_rhs_class (stmt))
{
case GIMPLE_SINGLE_RHS:
expr = gimple_assign_rhs1 (stmt);
continue;
case GIMPLE_UNARY_RHS:
rhs_count = 1;
break;
case GIMPLE_BINARY_RHS:
rhs_count = 2;
break;
case GIMPLE_TERNARY_RHS:
rhs_count = 3;
break;
default:
goto fail;
}
/* Stop if expression is too complex. */
if (op_count++ == op_limit)
break;
if (param_ops_p)
{
eval_op.code = gimple_assign_rhs_code (stmt);
eval_op.type = TREE_TYPE (gimple_assign_lhs (stmt));
eval_op.val[0] = NULL_TREE;
eval_op.val[1] = NULL_TREE;
}
expr = NULL_TREE;
for (unsigned i = 0; i < rhs_count; i++)
{
tree op = gimple_op (stmt, i + 1);
gcc_assert (op && !TYPE_P (op));
if (is_gimple_ip_invariant (op))
{
if (++cst_count == rhs_count)
goto fail;
eval_op.val[cst_count - 1] = op;
}
else if (!expr)
{
/* Found a non-constant operand, and record its index in rhs
operands. */
eval_op.index = i;
expr = op;
}
else
{
/* Found more than one non-constant operands. */
goto fail;
}
}
if (param_ops_p)
vec_safe_insert (*param_ops_p, 0, eval_op);
}
/* Failed to decompose, free resource and return. */
fail:
if (param_ops_p)
vec_free (*param_ops_p);
return false;
}
/* If BB ends by a conditional we can turn into predicates, attach corresponding
predicates to the CFG edges. */
static void
set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
class ipa_fn_summary *summary,
class ipa_node_params *params_summary,
basic_block bb)
{
gimple *last;
tree op, op2;
int index;
struct agg_position_info aggpos;
enum tree_code code, inverted_code;
edge e;
edge_iterator ei;
gimple *set_stmt;
tree param_type;
expr_eval_ops param_ops;
last = last_stmt (bb);
if (!last || gimple_code (last) != GIMPLE_COND)
return;
if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
return;
op = gimple_cond_lhs (last);
if (decompose_param_expr (fbi, last, op, &index, ¶m_type, &aggpos,
¶m_ops))
{
code = gimple_cond_code (last);
inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
FOR_EACH_EDGE (e, ei, bb->succs)
{
enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
? code : inverted_code);
/* invert_tree_comparison will return ERROR_MARK on FP
comparisons that are not EQ/NE instead of returning proper
unordered one. Be sure it is not confused with NON_CONSTANT.
And if the edge's target is the final block of diamond CFG graph
of this conditional statement, we do not need to compute
predicate for the edge because the final block's predicate must
be at least as that of the first block of the statement. */
if (this_code != ERROR_MARK
&& !dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest))
{
predicate p
= add_condition (summary, params_summary, index,
param_type, &aggpos,
this_code, gimple_cond_rhs (last), param_ops);
e->aux = edge_predicate_pool.allocate ();
*(predicate *) e->aux = p;
}
}
vec_free (param_ops);
}
if (TREE_CODE (op) != SSA_NAME)
return;
/* Special case
if (builtin_constant_p (op))
constant_code
else
nonconstant_code.
Here we can predicate nonconstant_code. We can't
really handle constant_code since we have no predicate
for this and also the constant code is not known to be
optimized away when inliner doesn't see operand is constant.
Other optimizers might think otherwise. */
if (gimple_cond_code (last) != NE_EXPR
|| !integer_zerop (gimple_cond_rhs (last)))
return;
set_stmt = SSA_NAME_DEF_STMT (op);
if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
|| gimple_call_num_args (set_stmt) != 1)
return;
op2 = gimple_call_arg (set_stmt, 0);
if (!decompose_param_expr (fbi, set_stmt, op2, &index, ¶m_type, &aggpos))
return;
FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
{
predicate p = add_condition (summary, params_summary, index,
param_type, &aggpos,
predicate::is_not_constant, NULL_TREE);
e->aux = edge_predicate_pool.allocate ();
*(predicate *) e->aux = p;
}
}
/* If BB ends by a switch we can turn into predicates, attach corresponding
predicates to the CFG edges. */
static void
set_switch_stmt_execution_predicate (struct ipa_func_body_info *fbi,
class ipa_fn_summary *summary,
class ipa_node_params *params_summary,
basic_block bb)
{
gimple *lastg;
tree op;
int index;
struct agg_position_info aggpos;
edge e;
edge_iterator ei;
size_t n;
size_t case_idx;
tree param_type;
expr_eval_ops param_ops;
lastg = last_stmt (bb);
if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
return;
gswitch *last = as_a (lastg);
op = gimple_switch_index (last);
if (!decompose_param_expr (fbi, last, op, &index, ¶m_type, &aggpos,
¶m_ops))
return;
auto_vec > ranges;
tree type = TREE_TYPE (op);
int bound_limit = opt_for_fn (fbi->node->decl,
param_ipa_max_switch_predicate_bounds);
int bound_count = 0;
wide_int vr_wmin, vr_wmax;
value_range_kind vr_type = get_range_info (op, &vr_wmin, &vr_wmax);
FOR_EACH_EDGE (e, ei, bb->succs)
{
e->aux = edge_predicate_pool.allocate ();
*(predicate *) e->aux = false;
}
e = gimple_switch_edge (cfun, last, 0);
/* Set BOUND_COUNT to maximum count to bypass computing predicate for
default case if its target basic block is in convergence point of all
switch cases, which can be determined by checking whether it
post-dominates the switch statement. */
if (dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest))
bound_count = INT_MAX;
n = gimple_switch_num_labels (last);
for (case_idx = 1; case_idx < n; ++case_idx)
{
tree cl = gimple_switch_label (last, case_idx);
tree min = CASE_LOW (cl);
tree max = CASE_HIGH (cl);
predicate p;
e = gimple_switch_edge (cfun, last, case_idx);
/* The case value might not have same type as switch expression,
extend the value based on the expression type. */
if (TREE_TYPE (min) != type)
min = wide_int_to_tree (type, wi::to_wide (min));
if (!max)
max = min;
else if (TREE_TYPE (max) != type)
max = wide_int_to_tree (type, wi::to_wide (max));
/* The case's target basic block is in convergence point of all switch
cases, its predicate should be at least as that of the switch
statement. */
if (dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest))
p = true;
else if (min == max)
p = add_condition (summary, params_summary, index, param_type,
&aggpos, EQ_EXPR, min, param_ops);
else
{
predicate p1, p2;
p1 = add_condition (summary, params_summary, index, param_type,
&aggpos, GE_EXPR, min, param_ops);
p2 = add_condition (summary, params_summary,index, param_type,
&aggpos, LE_EXPR, max, param_ops);
p = p1 & p2;
}
*(class predicate *) e->aux
= p.or_with (summary->conds, *(class predicate *) e->aux);
/* If there are too many disjoint case ranges, predicate for default
case might become too complicated. So add a limit here. */
if (bound_count > bound_limit)
continue;
bool new_range = true;
if (!ranges.is_empty ())
{
wide_int curr_wmin = wi::to_wide (min);
wide_int last_wmax = wi::to_wide (ranges.last ().second);
/* Merge case ranges if they are continuous. */
if (curr_wmin == last_wmax + 1)
new_range = false;
else if (vr_type == VR_ANTI_RANGE)
{
/* If two disjoint case ranges can be connected by anti-range
of switch index, combine them to one range. */
if (wi::lt_p (vr_wmax, curr_wmin - 1, TYPE_SIGN (type)))
vr_type = VR_UNDEFINED;
else if (wi::le_p (vr_wmin, last_wmax + 1, TYPE_SIGN (type)))
new_range = false;
}
}
/* Create/extend a case range. And we count endpoints of range set,
this number nearly equals to number of conditions that we will create
for predicate of default case. */
if (new_range)
{
bound_count += (min == max) ? 1 : 2;
ranges.safe_push (std::make_pair (min, max));
}
else
{
bound_count += (ranges.last ().first == ranges.last ().second);
ranges.last ().second = max;
}
}
e = gimple_switch_edge (cfun, last, 0);
if (bound_count > bound_limit)
{
*(class predicate *) e->aux = true;
vec_free (param_ops);
return;
}
predicate p_seg = true;
predicate p_all = false;
if (vr_type != VR_RANGE)
{
vr_wmin = wi::to_wide (TYPE_MIN_VALUE (type));
vr_wmax = wi::to_wide (TYPE_MAX_VALUE (type));
}
/* Construct predicate to represent default range set that is negation of
all case ranges. Case range is classified as containing single/non-single
values. Suppose a piece of case ranges in the following.
[D1...D2] [S1] ... [Sn] [D3...D4]
To represent default case's range sets between two non-single value
case ranges (From D2 to D3), we construct predicate as:
D2 < x < D3 && x != S1 && ... && x != Sn
*/
for (size_t i = 0; i < ranges.length (); i++)
{
tree min = ranges[i].first;
tree max = ranges[i].second;
if (min == max)
p_seg &= add_condition (summary, params_summary, index,
param_type, &aggpos, NE_EXPR,
min, param_ops);
else
{
/* Do not create sub-predicate for range that is beyond low bound
of switch index. */
if (wi::lt_p (vr_wmin, wi::to_wide (min), TYPE_SIGN (type)))
{
p_seg &= add_condition (summary, params_summary, index,
param_type, &aggpos,
LT_EXPR, min, param_ops);
p_all = p_all.or_with (summary->conds, p_seg);
}
/* Do not create sub-predicate for range that is beyond up bound
of switch index. */
if (wi::le_p (vr_wmax, wi::to_wide (max), TYPE_SIGN (type)))
{
p_seg = false;
break;
}
p_seg = add_condition (summary, params_summary, index,
param_type, &aggpos, GT_EXPR,
max, param_ops);
}
}
p_all = p_all.or_with (summary->conds, p_seg);
*(class predicate *) e->aux
= p_all.or_with (summary->conds, *(class predicate *) e->aux);
vec_free (param_ops);
}
/* For each BB in NODE attach to its AUX pointer predicate under
which it is executable. */
static void
compute_bb_predicates (struct ipa_func_body_info *fbi,
struct cgraph_node *node,
class ipa_fn_summary *summary,
class ipa_node_params *params_summary)
{
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
bool done = false;
basic_block bb;
FOR_EACH_BB_FN (bb, my_function)
{
set_cond_stmt_execution_predicate (fbi, summary, params_summary, bb);
set_switch_stmt_execution_predicate (fbi, summary, params_summary, bb);
}
/* Entry block is always executable. */
ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
= edge_predicate_pool.allocate ();
*(predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux = true;
/* A simple dataflow propagation of predicates forward in the CFG.
TODO: work in reverse postorder. */
while (!done)
{
done = true;
FOR_EACH_BB_FN (bb, my_function)
{
predicate p = false;
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->src->aux)
{
predicate this_bb_predicate
= *(predicate *) e->src->aux;
if (e->aux)
this_bb_predicate &= (*(class predicate *) e->aux);
p = p.or_with (summary->conds, this_bb_predicate);
if (p == true)
break;
}
}
if (p != false)
{
basic_block pdom_bb;
if (!bb->aux)
{
done = false;
bb->aux = edge_predicate_pool.allocate ();
*((predicate *) bb->aux) = p;
}
else if (p != *(predicate *) bb->aux)
{
/* This OR operation is needed to ensure monotonous data flow
in the case we hit the limit on number of clauses and the
and/or operations above give approximate answers. */
p = p.or_with (summary->conds, *(predicate *)bb->aux);
if (p != *(predicate *) bb->aux)
{
done = false;
*((predicate *) bb->aux) = p;
}
}
/* For switch/if statement, we can OR-combine predicates of all
its cases/branches to get predicate for basic block in their
convergence point, but sometimes this will generate very
complicated predicate. Actually, we can get simplified
predicate in another way by using the fact that predicate
for a basic block must also hold true for its post dominators.
To be specific, basic block in convergence point of
conditional statement should include predicate of the
statement. */
pdom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
if (pdom_bb == EXIT_BLOCK_PTR_FOR_FN (my_function) || !pdom_bb)
;
else if (!pdom_bb->aux)
{
done = false;
pdom_bb->aux = edge_predicate_pool.allocate ();
*((predicate *) pdom_bb->aux) = p;
}
else if (p != *(predicate *) pdom_bb->aux)
{
p = p.or_with (summary->conds, *(predicate *)pdom_bb->aux);
if (p != *(predicate *) pdom_bb->aux)
{
done = false;
*((predicate *) pdom_bb->aux) = p;
}
}
}
}
}
}
/* Return predicate specifying when the STMT might have result that is not
a compile time constant. */
static predicate
will_be_nonconstant_expr_predicate (ipa_func_body_info *fbi,
class ipa_fn_summary *summary,
class ipa_node_params *params_summary,
tree expr,
vec nonconstant_names)
{
tree parm;
int index;
while (UNARY_CLASS_P (expr))
expr = TREE_OPERAND (expr, 0);
parm = unmodified_parm (fbi, NULL, expr, NULL);
if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
return add_condition (summary, params_summary, index, TREE_TYPE (parm), NULL,
predicate::changed, NULL_TREE);
if (is_gimple_min_invariant (expr))
return false;
if (TREE_CODE (expr) == SSA_NAME)
return nonconstant_names[SSA_NAME_VERSION (expr)];
if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
{
predicate p1
= will_be_nonconstant_expr_predicate (fbi, summary,
params_summary,
TREE_OPERAND (expr, 0),
nonconstant_names);
if (p1 == true)
return p1;
predicate p2
= will_be_nonconstant_expr_predicate (fbi, summary,
params_summary,
TREE_OPERAND (expr, 1),
nonconstant_names);
return p1.or_with (summary->conds, p2);
}
else if (TREE_CODE (expr) == COND_EXPR)
{
predicate p1
= will_be_nonconstant_expr_predicate (fbi, summary,
params_summary,
TREE_OPERAND (expr, 0),
nonconstant_names);
if (p1 == true)
return p1;
predicate p2
= will_be_nonconstant_expr_predicate (fbi, summary,
params_summary,
TREE_OPERAND (expr, 1),
nonconstant_names);
if (p2 == true)
return p2;
p1 = p1.or_with (summary->conds, p2);
p2 = will_be_nonconstant_expr_predicate (fbi, summary,
params_summary,
TREE_OPERAND (expr, 2),
nonconstant_names);
return p2.or_with (summary->conds, p1);
}
else if (TREE_CODE (expr) == CALL_EXPR)
return true;
else
{
debug_tree (expr);
gcc_unreachable ();
}
return false;
}
/* Return predicate specifying when the STMT might have result that is not
a compile time constant. */
static predicate
will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
class ipa_fn_summary *summary,
class ipa_node_params *params_summary,
gimple *stmt,
vec nonconstant_names)
{
predicate p = true;
ssa_op_iter iter;
tree use;
tree param_type = NULL_TREE;
predicate op_non_const;
bool is_load;
int base_index;
struct agg_position_info aggpos;
/* What statements might be optimized away
when their arguments are constant. */
if (gimple_code (stmt) != GIMPLE_ASSIGN
&& gimple_code (stmt) != GIMPLE_COND
&& gimple_code (stmt) != GIMPLE_SWITCH
&& (gimple_code (stmt) != GIMPLE_CALL
|| !(gimple_call_flags (stmt) & ECF_CONST)))
return p;
/* Stores will stay anyway. */
if (gimple_store_p (stmt))
return p;
is_load = gimple_assign_load_p (stmt);
/* Loads can be optimized when the value is known. */
if (is_load)
{
tree op = gimple_assign_rhs1 (stmt);
if (!decompose_param_expr (fbi, stmt, op, &base_index, ¶m_type,
&aggpos))
return p;
}
else
base_index = -1;
/* See if we understand all operands before we start
adding conditionals. */
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
{
tree parm = unmodified_parm (fbi, stmt, use, NULL);
/* For arguments we can build a condition. */
if (parm && ipa_get_param_decl_index (fbi->info, parm) >= 0)
continue;
if (TREE_CODE (use) != SSA_NAME)
return p;
/* If we know when operand is constant,
we still can say something useful. */
if (nonconstant_names[SSA_NAME_VERSION (use)] != true)
continue;
return p;
}
if (is_load)
op_non_const =
add_condition (summary, params_summary,
base_index, param_type, &aggpos,
predicate::changed, NULL_TREE);
else
op_non_const = false;
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
{
tree parm = unmodified_parm (fbi, stmt, use, NULL);
int index;
if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
{
if (index != base_index)
p = add_condition (summary, params_summary, index,
TREE_TYPE (parm), NULL,
predicate::changed, NULL_TREE);
else
continue;
}
else
p = nonconstant_names[SSA_NAME_VERSION (use)];
op_non_const = p.or_with (summary->conds, op_non_const);
}
if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
&& gimple_op (stmt, 0)
&& TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
= op_non_const;
return op_non_const;
}
struct record_modified_bb_info
{
tree op;
bitmap bb_set;
gimple *stmt;
};
/* Value is initialized in INIT_BB and used in USE_BB. We want to compute
probability how often it changes between USE_BB.
INIT_BB->count/USE_BB->count is an estimate, but if INIT_BB
is in different loop nest, we can do better.
This is all just estimate. In theory we look for minimal cut separating
INIT_BB and USE_BB, but we only want to anticipate loop invariant motion
anyway. */
static basic_block
get_minimal_bb (basic_block init_bb, basic_block use_bb)
{
class loop *l = find_common_loop (init_bb->loop_father, use_bb->loop_father);
if (l && l->header->count < init_bb->count)
return l->header;
return init_bb;
}
/* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
set except for info->stmt. */
static bool
record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
{
struct record_modified_bb_info *info =
(struct record_modified_bb_info *) data;
if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
return false;
if (gimple_clobber_p (SSA_NAME_DEF_STMT (vdef)))
return false;
bitmap_set_bit (info->bb_set,
SSA_NAME_IS_DEFAULT_DEF (vdef)
? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
: get_minimal_bb
(gimple_bb (SSA_NAME_DEF_STMT (vdef)),
gimple_bb (info->stmt))->index);
if (dump_file)
{
fprintf (dump_file, " Param ");
print_generic_expr (dump_file, info->op, TDF_SLIM);
fprintf (dump_file, " changed at bb %i, minimal: %i stmt: ",
gimple_bb (SSA_NAME_DEF_STMT (vdef))->index,
get_minimal_bb
(gimple_bb (SSA_NAME_DEF_STMT (vdef)),
gimple_bb (info->stmt))->index);
print_gimple_stmt (dump_file, SSA_NAME_DEF_STMT (vdef), 0);
}
return false;
}
/* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
will change since last invocation of STMT.
Value 0 is reserved for compile time invariants.
For common parameters it is REG_BR_PROB_BASE. For loop invariants it
ought to be REG_BR_PROB_BASE / estimated_iters. */
static int
param_change_prob (ipa_func_body_info *fbi, gimple *stmt, int i)
{
tree op = gimple_call_arg (stmt, i);
basic_block bb = gimple_bb (stmt);
if (TREE_CODE (op) == WITH_SIZE_EXPR)
op = TREE_OPERAND (op, 0);
tree base = get_base_address (op);
/* Global invariants never change. */
if (is_gimple_min_invariant (base))
return 0;
/* We would have to do non-trivial analysis to really work out what
is the probability of value to change (i.e. when init statement
is in a sibling loop of the call).
We do an conservative estimate: when call is executed N times more often
than the statement defining value, we take the frequency 1/N. */
if (TREE_CODE (base) == SSA_NAME)
{
profile_count init_count;
if (!bb->count.nonzero_p ())
return REG_BR_PROB_BASE;
if (SSA_NAME_IS_DEFAULT_DEF (base))
init_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
else
init_count = get_minimal_bb
(gimple_bb (SSA_NAME_DEF_STMT (base)),
gimple_bb (stmt))->count;
if (init_count < bb->count)
return MAX ((init_count.to_sreal_scale (bb->count)
* REG_BR_PROB_BASE).to_int (), 1);
return REG_BR_PROB_BASE;
}
else
{
ao_ref refd;
profile_count max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
struct record_modified_bb_info info;
tree init = ctor_for_folding (base);
if (init != error_mark_node)
return 0;
if (!bb->count.nonzero_p ())
return REG_BR_PROB_BASE;
if (dump_file)
{
fprintf (dump_file, " Analyzing param change probability of ");
print_generic_expr (dump_file, op, TDF_SLIM);
fprintf (dump_file, "\n");
}
ao_ref_init (&refd, op);
info.op = op;
info.stmt = stmt;
info.bb_set = BITMAP_ALLOC (NULL);
int walked
= walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
NULL, NULL, fbi->aa_walk_budget);
if (walked < 0 || bitmap_bit_p (info.bb_set, bb->index))
{
if (dump_file)
{
if (walked < 0)
fprintf (dump_file, " Ran out of AA walking budget.\n");
else
fprintf (dump_file, " Set in same BB as used.\n");
}
BITMAP_FREE (info.bb_set);
return REG_BR_PROB_BASE;
}
bitmap_iterator bi;
unsigned index;
/* Lookup the most frequent update of the value and believe that
it dominates all the other; precise analysis here is difficult. */
EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
max = max.max (BASIC_BLOCK_FOR_FN (cfun, index)->count);
if (dump_file)
{
fprintf (dump_file, " Set with count ");
max.dump (dump_file);
fprintf (dump_file, " and used with count ");
bb->count.dump (dump_file);
fprintf (dump_file, " freq %f\n",
max.to_sreal_scale (bb->count).to_double ());
}
BITMAP_FREE (info.bb_set);
if (max < bb->count)
return MAX ((max.to_sreal_scale (bb->count)
* REG_BR_PROB_BASE).to_int (), 1);
return REG_BR_PROB_BASE;
}
}
/* Find whether a basic block BB is the final block of a (half) diamond CFG
sub-graph and if the predicate the condition depends on is known. If so,
return true and store the pointer the predicate in *P. */
static bool
phi_result_unknown_predicate (ipa_func_body_info *fbi,
ipa_fn_summary *summary,
class ipa_node_params *params_summary,
basic_block bb,
predicate *p,
vec nonconstant_names)
{
edge e;
edge_iterator ei;
basic_block first_bb = NULL;
gimple *stmt;
if (single_pred_p (bb))
{
*p = false;
return true;
}
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (single_succ_p (e->src))
{
if (!single_pred_p (e->src))
return false;
if (!first_bb)
first_bb = single_pred (e->src);
else if (single_pred (e->src) != first_bb)
return false;
}
else
{
if (!first_bb)
first_bb = e->src;
else if (e->src != first_bb)
return false;
}
}
if (!first_bb)
return false;
stmt = last_stmt (first_bb);
if (!stmt
|| gimple_code (stmt) != GIMPLE_COND
|| !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
return false;
*p = will_be_nonconstant_expr_predicate (fbi, summary, params_summary,
gimple_cond_lhs (stmt),
nonconstant_names);
if (*p == true)
return false;
else
return true;
}
/* Given a PHI statement in a function described by inline properties SUMMARY
and *P being the predicate describing whether the selected PHI argument is
known, store a predicate for the result of the PHI statement into
NONCONSTANT_NAMES, if possible. */
static void
predicate_for_phi_result (class ipa_fn_summary *summary, gphi *phi,
predicate *p,
vec nonconstant_names)
{
unsigned i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree arg = gimple_phi_arg (phi, i)->def;
if (!is_gimple_min_invariant (arg))
{
gcc_assert (TREE_CODE (arg) == SSA_NAME);
*p = p->or_with (summary->conds,
nonconstant_names[SSA_NAME_VERSION (arg)]);
if (*p == true)
return;
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\t\tphi predicate: ");
p->dump (dump_file, summary->conds);
}
nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
}
/* For a typical usage of __builtin_expect (apreds)
if (!(e->flags & EDGE_EH)
&& !clobber_only_eh_bb_p (e->src, false))
return false;
return true;
}
/* Return true if STMT compute a floating point expression that may be affected
by -ffast-math and similar flags. */
static bool
fp_expression_p (gimple *stmt)
{
ssa_op_iter i;
tree op;
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF|SSA_OP_USE)
if (FLOAT_TYPE_P (TREE_TYPE (op)))
return true;
return false;
}
/* Analyze function body for NODE.
EARLY indicates run from early optimization pipeline. */
static void
analyze_function_body (struct cgraph_node *node, bool early)
{
sreal time = opt_for_fn (node->decl, param_uninlined_function_time);
/* Estimate static overhead for function prologue/epilogue and alignment. */
int size = opt_for_fn (node->decl, param_uninlined_function_insns);
/* Benefits are scaled by probability of elimination that is in range
<0,2>. */
basic_block bb;
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
sreal freq;
class ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
class ipa_node_params *params_summary = early ? NULL : IPA_NODE_REF (node);
predicate bb_predicate;
struct ipa_func_body_info fbi;
vec nonconstant_names = vNULL;
int nblocks, n;
int *order;
gimple *fix_builtin_expect_stmt;
gcc_assert (my_function && my_function->cfg);
gcc_assert (cfun == my_function);
memset(&fbi, 0, sizeof(fbi));
vec_free (info->conds);
info->conds = NULL;
vec_free (info->size_time_table);
info->size_time_table = NULL;
/* When optimizing and analyzing for IPA inliner, initialize loop optimizer
so we can produce proper inline hints.
When optimizing and analyzing for early inliner, initialize node params
so we can produce correct BB predicates. */
if (opt_for_fn (node->decl, optimize))
{
calculate_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_POST_DOMINATORS);
if (!early)
loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
else
{
ipa_check_create_node_params ();
ipa_initialize_node_params (node);
}
if (ipa_node_params_sum)
{
fbi.node = node;
fbi.info = IPA_NODE_REF (node);
fbi.bb_infos = vNULL;
fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
fbi.param_count = count_formal_params (node->decl);
fbi.aa_walk_budget = opt_for_fn (node->decl, param_ipa_max_aa_steps);
nonconstant_names.safe_grow_cleared
(SSANAMES (my_function)->length ());
}
}
if (dump_file)
fprintf (dump_file, "\nAnalyzing function body size: %s\n",
node->dump_name ());
/* When we run into maximal number of entries, we assign everything to the
constant truth case. Be sure to have it in list. */
bb_predicate = true;
info->account_size_time (0, 0, bb_predicate, bb_predicate);
bb_predicate = predicate::not_inlined ();
info->account_size_time (opt_for_fn (node->decl,
param_uninlined_function_insns)
* ipa_fn_summary::size_scale,
opt_for_fn (node->decl,
param_uninlined_function_time),
bb_predicate,
bb_predicate);
if (fbi.info)
compute_bb_predicates (&fbi, node, info, params_summary);
order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
nblocks = pre_and_rev_post_order_compute (NULL, order, false);
for (n = 0; n < nblocks; n++)
{
bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
freq = bb->count.to_sreal_scale (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
if (clobber_only_eh_bb_p (bb))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\n Ignoring BB %i;"
" it will be optimized away by cleanup_clobbers\n",
bb->index);
continue;
}
/* TODO: Obviously predicates can be propagated down across CFG. */
if (fbi.info)
{
if (bb->aux)
bb_predicate = *(predicate *) bb->aux;
else
bb_predicate = false;
}
else
bb_predicate = true;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n BB %i predicate:", bb->index);
bb_predicate.dump (dump_file, info->conds);
}
if (fbi.info && nonconstant_names.exists ())
{
predicate phi_predicate;
bool first_phi = true;
for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
gsi_next (&bsi))
{
if (first_phi
&& !phi_result_unknown_predicate (&fbi, info,
params_summary,
bb,
&phi_predicate,
nonconstant_names))
break;
first_phi = false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " ");
print_gimple_stmt (dump_file, gsi_stmt (bsi), 0);
}
predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
nonconstant_names);
}
}
fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
for (gimple_stmt_iterator bsi = gsi_start_nondebug_bb (bb);
!gsi_end_p (bsi); gsi_next_nondebug (&bsi))
{
gimple *stmt = gsi_stmt (bsi);
int this_size = estimate_num_insns (stmt, &eni_size_weights);
int this_time = estimate_num_insns (stmt, &eni_time_weights);
int prob;
predicate will_be_nonconstant;
/* This relation stmt should be folded after we remove
__builtin_expect call. Adjust the cost here. */
if (stmt == fix_builtin_expect_stmt)
{
this_size--;
this_time--;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
freq.to_double (), this_size,
this_time);
}
if (is_gimple_call (stmt)
&& !gimple_call_internal_p (stmt))
{
struct cgraph_edge *edge = node->get_edge (stmt);
ipa_call_summary *es = ipa_call_summaries->get_create (edge);
/* Special case: results of BUILT_IN_CONSTANT_P will be always
resolved as constant. We however don't want to optimize
out the cgraph edges. */
if (nonconstant_names.exists ()
&& gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
&& gimple_call_lhs (stmt)
&& TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
{
predicate false_p = false;
nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
= false_p;
}
if (ipa_node_params_sum)
{
int count = gimple_call_num_args (stmt);
int i;
if (count)
es->param.safe_grow_cleared (count);
for (i = 0; i < count; i++)
{
int prob = param_change_prob (&fbi, stmt, i);
gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
es->param[i].change_prob = prob;
}
}
es->call_stmt_size = this_size;
es->call_stmt_time = this_time;
es->loop_depth = bb_loop_depth (bb);
edge_set_predicate (edge, &bb_predicate);
if (edge->speculative)
{
cgraph_edge *indirect
= edge->speculative_call_indirect_edge ();
ipa_call_summary *es2
= ipa_call_summaries->get_create (indirect);
ipa_call_summaries->duplicate (edge, indirect,
es, es2);
/* Edge is the first direct call.
create and duplicate call summaries for multiple
speculative call targets. */
for (cgraph_edge *direct
= edge->next_speculative_call_target ();
direct;
direct = direct->next_speculative_call_target ())
{
ipa_call_summary *es3
= ipa_call_summaries->get_create (direct);
ipa_call_summaries->duplicate (edge, direct,
es, es3);
}
}
}
/* TODO: When conditional jump or switch is known to be constant, but
we did not translate it into the predicates, we really can account
just maximum of the possible paths. */
if (fbi.info)
will_be_nonconstant
= will_be_nonconstant_predicate (&fbi, info, params_summary,
stmt, nonconstant_names);
else
will_be_nonconstant = true;
if (this_time || this_size)
{
sreal final_time = (sreal)this_time * freq;
prob = eliminated_by_inlining_prob (&fbi, stmt);
if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"\t\t50%% will be eliminated by inlining\n");
if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
class predicate p = bb_predicate & will_be_nonconstant;
/* We can ignore statement when we proved it is never going
to happen, but we cannot do that for call statements
because edges are accounted specially. */
if (*(is_gimple_call (stmt) ? &bb_predicate : &p) != false)
{
time += final_time;
size += this_size;
}
/* We account everything but the calls. Calls have their own
size/time info attached to cgraph edges. This is necessary
in order to make the cost disappear after inlining. */
if (!is_gimple_call (stmt))
{
if (prob)
{
predicate ip = bb_predicate & predicate::not_inlined ();
info->account_size_time (this_size * prob,
(final_time * prob) / 2, ip,
p);
}
if (prob != 2)
info->account_size_time (this_size * (2 - prob),
(final_time * (2 - prob) / 2),
bb_predicate,
p);
}
if (!info->fp_expressions && fp_expression_p (stmt))
{
info->fp_expressions = true;
if (dump_file)
fprintf (dump_file, " fp_expression set\n");
}
}
/* Account cost of address calculations in the statements. */
for (unsigned int i = 0; i < gimple_num_ops (stmt); i++)
{
for (tree op = gimple_op (stmt, i);
op && handled_component_p (op);
op = TREE_OPERAND (op, 0))
if ((TREE_CODE (op) == ARRAY_REF
|| TREE_CODE (op) == ARRAY_RANGE_REF)
&& TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
{
predicate p = bb_predicate;
if (fbi.info)
p = p & will_be_nonconstant_expr_predicate
(&fbi, info, params_summary,
TREE_OPERAND (op, 1),
nonconstant_names);
if (p != false)
{
time += freq;
size += 1;
if (dump_file)
fprintf (dump_file,
"\t\tAccounting address calculation.\n");
info->account_size_time (ipa_fn_summary::size_scale,
freq,
bb_predicate,
p);
}
}
}
}
}
free (order);
if (nonconstant_names.exists () && !early)
{
class loop *loop;
predicate loop_iterations = true;
predicate loop_stride = true;
if (dump_file && (dump_flags & TDF_DETAILS))
flow_loops_dump (dump_file, NULL, 0);
scev_initialize ();
FOR_EACH_LOOP (loop, 0)
{
vec exits;
edge ex;
unsigned int j;
class tree_niter_desc niter_desc;
if (loop->header->aux)
bb_predicate = *(predicate *) loop->header->aux;
else
bb_predicate = false;
exits = get_loop_exit_edges (loop);
FOR_EACH_VEC_ELT (exits, j, ex)
if (number_of_iterations_exit (loop, ex, &niter_desc, false)
&& !is_gimple_min_invariant (niter_desc.niter))
{
predicate will_be_nonconstant
= will_be_nonconstant_expr_predicate (&fbi, info,
params_summary,
niter_desc.niter,
nonconstant_names);
if (will_be_nonconstant != true)
will_be_nonconstant = bb_predicate & will_be_nonconstant;
if (will_be_nonconstant != true
&& will_be_nonconstant != false)
/* This is slightly inprecise. We may want to represent each
loop with independent predicate. */
loop_iterations &= will_be_nonconstant;
}
exits.release ();
}
/* To avoid quadratic behavior we analyze stride predicates only
with respect to the containing loop. Thus we simply iterate
over all defs in the outermost loop body. */
for (loop = loops_for_fn (cfun)->tree_root->inner;
loop != NULL; loop = loop->next)
{
basic_block *body = get_loop_body (loop);
for (unsigned i = 0; i < loop->num_nodes; i++)
{
gimple_stmt_iterator gsi;
if (body[i]->aux)
bb_predicate = *(predicate *) body[i]->aux;
else
bb_predicate = false;
for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (!is_gimple_assign (stmt))
continue;
tree def = gimple_assign_lhs (stmt);
if (TREE_CODE (def) != SSA_NAME)
continue;
affine_iv iv;
if (!simple_iv (loop_containing_stmt (stmt),
loop_containing_stmt (stmt),
def, &iv, true)
|| is_gimple_min_invariant (iv.step))
continue;
predicate will_be_nonconstant
= will_be_nonconstant_expr_predicate (&fbi, info,
params_summary,
iv.step,
nonconstant_names);
if (will_be_nonconstant != true)
will_be_nonconstant = bb_predicate & will_be_nonconstant;
if (will_be_nonconstant != true
&& will_be_nonconstant != false)
/* This is slightly inprecise. We may want to represent
each loop with independent predicate. */
loop_stride = loop_stride & will_be_nonconstant;
}
}
free (body);
}
ipa_fn_summary *s = ipa_fn_summaries->get (node);
set_hint_predicate (&s->loop_iterations, loop_iterations);
set_hint_predicate (&s->loop_stride, loop_stride);
scev_finalize ();
}
FOR_ALL_BB_FN (bb, my_function)
{
edge e;
edge_iterator ei;
if (bb->aux)
edge_predicate_pool.remove ((predicate *)bb->aux);
bb->aux = NULL;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->aux)
edge_predicate_pool.remove ((predicate *) e->aux);
e->aux = NULL;
}
}
ipa_fn_summary *s = ipa_fn_summaries->get (node);
ipa_size_summary *ss = ipa_size_summaries->get (node);
s->time = time;
ss->self_size = size;
nonconstant_names.release ();
ipa_release_body_info (&fbi);
if (opt_for_fn (node->decl, optimize))
{
if (!early)
loop_optimizer_finalize ();
else if (!ipa_edge_args_sum)
ipa_free_all_node_params ();
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
}
if (dump_file)
{
fprintf (dump_file, "\n");
ipa_dump_fn_summary (dump_file, node);
}
}
/* Compute function summary.
EARLY is true when we compute parameters during early opts. */
void
compute_fn_summary (struct cgraph_node *node, bool early)
{
HOST_WIDE_INT self_stack_size;
struct cgraph_edge *e;
gcc_assert (!node->inlined_to);
if (!ipa_fn_summaries)
ipa_fn_summary_alloc ();
/* Create a new ipa_fn_summary. */
((ipa_fn_summary_t *)ipa_fn_summaries)->remove_callees (node);
ipa_fn_summaries->remove (node);
class ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
class ipa_size_summary *size_info = ipa_size_summaries->get_create (node);
/* Estimate the stack size for the function if we're optimizing. */
self_stack_size = optimize && !node->thunk.thunk_p
? estimated_stack_frame_size (node) : 0;
size_info->estimated_self_stack_size = self_stack_size;
info->estimated_stack_size = self_stack_size;
if (node->thunk.thunk_p)
{
ipa_call_summary *es = ipa_call_summaries->get_create (node->callees);
predicate t = true;
node->can_change_signature = false;
es->call_stmt_size = eni_size_weights.call_cost;
es->call_stmt_time = eni_time_weights.call_cost;
info->account_size_time (ipa_fn_summary::size_scale
* opt_for_fn (node->decl,
param_uninlined_function_thunk_insns),
opt_for_fn (node->decl,
param_uninlined_function_thunk_time), t, t);
t = predicate::not_inlined ();
info->account_size_time (2 * ipa_fn_summary::size_scale, 0, t, t);
ipa_update_overall_fn_summary (node);
size_info->self_size = size_info->size;
if (stdarg_p (TREE_TYPE (node->decl)))
{
info->inlinable = false;
node->callees->inline_failed = CIF_VARIADIC_THUNK;
}
else
info->inlinable = true;
}
else
{
/* Even is_gimple_min_invariant rely on current_function_decl. */
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
/* During IPA profile merging we may be called w/o virtual SSA form
built. */
update_ssa (TODO_update_ssa_only_virtuals);
/* Can this function be inlined at all? */
if (!opt_for_fn (node->decl, optimize)
&& !lookup_attribute ("always_inline",
DECL_ATTRIBUTES (node->decl)))
info->inlinable = false;
else
info->inlinable = tree_inlinable_function_p (node->decl);
/* Type attributes can use parameter indices to describe them. */
if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl))
/* Likewise for #pragma omp declare simd functions or functions
with simd attribute. */
|| lookup_attribute ("omp declare simd",
DECL_ATTRIBUTES (node->decl)))
node->can_change_signature = false;
else
{
/* Otherwise, inlinable functions always can change signature. */
if (info->inlinable)
node->can_change_signature = true;
else
{
/* Functions calling builtin_apply cannot change signature. */
for (e = node->callees; e; e = e->next_callee)
{
tree cdecl = e->callee->decl;
if (fndecl_built_in_p (cdecl, BUILT_IN_APPLY_ARGS)
|| fndecl_built_in_p (cdecl, BUILT_IN_VA_START))
break;
}
node->can_change_signature = !e;
}
}
analyze_function_body (node, early);
pop_cfun ();
}
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
size_info->size = size_info->self_size;
info->estimated_stack_size = size_info->estimated_self_stack_size;
/* Code above should compute exactly the same result as
ipa_update_overall_fn_summary except for case when speculative
edges are present since these are accounted to size but not
self_size. Do not compare time since different order the roundoff
errors result in slight changes. */
ipa_update_overall_fn_summary (node);
if (flag_checking)
{
for (e = node->indirect_calls; e; e = e->next_callee)
if (e->speculative)
break;
gcc_assert (e || size_info->size == size_info->self_size);
}
}
/* Compute parameters of functions used by inliner using
current_function_decl. */
static unsigned int
compute_fn_summary_for_current (void)
{
compute_fn_summary (cgraph_node::get (current_function_decl), true);
return 0;
}
/* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
KNOWN_CONTEXTS and KNOWN_AGGS. */
static bool
estimate_edge_devirt_benefit (struct cgraph_edge *ie,
int *size, int *time,
vec known_vals,
vec known_contexts,
vec known_aggs)
{
tree target;
struct cgraph_node *callee;
class ipa_fn_summary *isummary;
enum availability avail;
bool speculative;
if (!known_vals.length () && !known_contexts.length ())
return false;
if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
return false;
target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
known_aggs, &speculative);
if (!target || speculative)
return false;
/* Account for difference in cost between indirect and direct calls. */
*size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
*time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
gcc_checking_assert (*time >= 0);
gcc_checking_assert (*size >= 0);
callee = cgraph_node::get (target);
if (!callee || !callee->definition)
return false;
callee = callee->function_symbol (&avail);
if (avail < AVAIL_AVAILABLE)
return false;
isummary = ipa_fn_summaries->get (callee);
if (isummary == NULL)
return false;
return isummary->inlinable;
}
/* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
handle edge E with probability PROB.
Set HINTS if edge may be devirtualized.
KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
site. */
static inline void
estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
sreal *time,
vec known_vals,
vec known_contexts,
vec known_aggs,
ipa_hints *hints)
{
class ipa_call_summary *es = ipa_call_summaries->get (e);
int call_size = es->call_stmt_size;
int call_time = es->call_stmt_time;
int cur_size;
if (!e->callee && hints && e->maybe_hot_p ()
&& estimate_edge_devirt_benefit (e, &call_size, &call_time,
known_vals, known_contexts, known_aggs))
*hints |= INLINE_HINT_indirect_call;
cur_size = call_size * ipa_fn_summary::size_scale;
*size += cur_size;
if (min_size)
*min_size += cur_size;
if (time)
*time += ((sreal)call_time) * e->sreal_frequency ();
}
/* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
describe context of the call site.
Helper for estimate_calls_size_and_time which does the same but
(in most cases) faster. */
static void
estimate_calls_size_and_time_1 (struct cgraph_node *node, int *size,
int *min_size, sreal *time,
ipa_hints *hints,
clause_t possible_truths,
vec known_vals,
vec known_contexts,
vec known_aggs)
{
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
{
if (!e->inline_failed)
{
gcc_checking_assert (!ipa_call_summaries->get (e));
estimate_calls_size_and_time_1 (e->callee, size, min_size, time,
hints,
possible_truths,
known_vals, known_contexts,
known_aggs);
continue;
}
class ipa_call_summary *es = ipa_call_summaries->get (e);
/* Do not care about zero sized builtins. */
if (!es->call_stmt_size)
{
gcc_checking_assert (!es->call_stmt_time);
continue;
}
if (!es->predicate
|| es->predicate->evaluate (possible_truths))
{
/* Predicates of calls shall not use NOT_CHANGED codes,
so we do not need to compute probabilities. */
estimate_edge_size_and_time (e, size,
es->predicate ? NULL : min_size,
time,
known_vals, known_contexts,
known_aggs, hints);
}
}
for (e = node->indirect_calls; e; e = e->next_callee)
{
class ipa_call_summary *es = ipa_call_summaries->get (e);
if (!es->predicate
|| es->predicate->evaluate (possible_truths))
estimate_edge_size_and_time (e, size,
es->predicate ? NULL : min_size,
time,
known_vals, known_contexts, known_aggs,
hints);
}
}
/* Populate sum->call_size_time_table for edges from NODE. */
static void
summarize_calls_size_and_time (struct cgraph_node *node,
ipa_fn_summary *sum)
{
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
{
if (!e->inline_failed)
{
gcc_checking_assert (!ipa_call_summaries->get (e));
summarize_calls_size_and_time (e->callee, sum);
continue;
}
int size = 0;
sreal time = 0;
estimate_edge_size_and_time (e, &size, NULL, &time,
vNULL, vNULL, vNULL, NULL);
struct predicate pred = true;
class ipa_call_summary *es = ipa_call_summaries->get (e);
if (es->predicate)
pred = *es->predicate;
sum->account_size_time (size, time, pred, pred, true);
}
for (e = node->indirect_calls; e; e = e->next_callee)
{
int size = 0;
sreal time = 0;
estimate_edge_size_and_time (e, &size, NULL, &time,
vNULL, vNULL, vNULL, NULL);
struct predicate pred = true;
class ipa_call_summary *es = ipa_call_summaries->get (e);
if (es->predicate)
pred = *es->predicate;
sum->account_size_time (size, time, pred, pred, true);
}
}
/* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
describe context of the call site. */
static void
estimate_calls_size_and_time (struct cgraph_node *node, int *size,
int *min_size, sreal *time,
ipa_hints *hints,
clause_t possible_truths,
vec known_vals,
vec known_contexts,
vec known_aggs)
{
class ipa_fn_summary *sum = ipa_fn_summaries->get (node);
bool use_table = true;
gcc_assert (node->callees || node->indirect_calls);
/* During early inlining we do not calculate info for very
large functions and thus there is no need for producing
summaries. */
if (!ipa_node_params_sum)
use_table = false;
/* Do not calculate summaries for simple wrappers; it is waste
of memory. */
else if (node->callees && node->indirect_calls
&& node->callees->inline_failed && !node->callees->next_callee)
use_table = false;
/* If there is an indirect edge that may be optimized, we need
to go the slow way. */
else if ((known_vals.length ()
|| known_contexts.length ()
|| known_aggs.length ()) && hints)
{
class ipa_node_params *params_summary = IPA_NODE_REF (node);
unsigned int nargs = params_summary
? ipa_get_param_count (params_summary) : 0;
for (unsigned int i = 0; i < nargs && use_table; i++)
{
if (ipa_is_param_used_by_indirect_call (params_summary, i)
&& ((known_vals.length () > i && known_vals[i])
|| (known_aggs.length () > i
&& known_aggs[i].items.length ())))
use_table = false;
else if (ipa_is_param_used_by_polymorphic_call (params_summary, i)
&& (known_contexts.length () > i
&& !known_contexts[i].useless_p ()))
use_table = false;
}
}
/* Fast path is via the call size time table. */
if (use_table)
{
/* Build summary if it is absent. */
if (!sum->call_size_time_table)
{
predicate true_pred = true;
sum->account_size_time (0, 0, true_pred, true_pred, true);
summarize_calls_size_and_time (node, sum);
}
int old_size = *size;
sreal old_time = time ? *time : 0;
if (min_size)
*min_size += (*sum->call_size_time_table)[0].size;
unsigned int i;
size_time_entry *e;
/* Walk the table and account sizes and times. */
for (i = 0; vec_safe_iterate (sum->call_size_time_table, i, &e);
i++)
if (e->exec_predicate.evaluate (possible_truths))
{
*size += e->size;
if (time)
*time += e->time;
}
/* Be careful and see if both methods agree. */
if ((flag_checking || dump_file)
/* Do not try to sanity check when we know we lost some
precision. */
&& sum->call_size_time_table->length ()
< ipa_fn_summary::max_size_time_table_size)
{
estimate_calls_size_and_time_1 (node, &old_size, NULL, &old_time, NULL,
possible_truths, known_vals,
known_contexts, known_aggs);
gcc_assert (*size == old_size);
if (time && (*time - old_time > 1 || *time - old_time < -1)
&& dump_file)
fprintf (dump_file, "Time mismatch in call summary %f!=%f\n",
old_time.to_double (),
time->to_double ());
}
}
/* Slow path by walking all edges. */
else
estimate_calls_size_and_time_1 (node, size, min_size, time, hints,
possible_truths, known_vals, known_contexts,
known_aggs);
}
/* Default constructor for ipa call context.
Memory allocation of known_vals, known_contexts
and known_aggs vectors is owned by the caller, but can
be release by ipa_call_context::release.
inline_param_summary is owned by the caller. */
ipa_call_context::ipa_call_context (cgraph_node *node,
clause_t possible_truths,
clause_t nonspec_possible_truths,
vec known_vals,
vec
known_contexts,
vec known_aggs,
vec
inline_param_summary)
: m_node (node), m_possible_truths (possible_truths),
m_nonspec_possible_truths (nonspec_possible_truths),
m_inline_param_summary (inline_param_summary),
m_known_vals (known_vals),
m_known_contexts (known_contexts),
m_known_aggs (known_aggs)
{
}
/* Set THIS to be a duplicate of CTX. Copy all relevant info. */
void
ipa_call_context::duplicate_from (const ipa_call_context &ctx)
{
m_node = ctx.m_node;
m_possible_truths = ctx.m_possible_truths;
m_nonspec_possible_truths = ctx.m_nonspec_possible_truths;
class ipa_node_params *params_summary = IPA_NODE_REF (m_node);
unsigned int nargs = params_summary
? ipa_get_param_count (params_summary) : 0;
m_inline_param_summary = vNULL;
/* Copy the info only if there is at least one useful entry. */
if (ctx.m_inline_param_summary.exists ())
{
unsigned int n = MIN (ctx.m_inline_param_summary.length (), nargs);
for (unsigned int i = 0; i < n; i++)
if (ipa_is_param_used_by_ipa_predicates (params_summary, i)
&& !ctx.m_inline_param_summary[i].useless_p ())
{
m_inline_param_summary
= ctx.m_inline_param_summary.copy ();
break;
}
}
m_known_vals = vNULL;
if (ctx.m_known_vals.exists ())
{
unsigned int n = MIN (ctx.m_known_vals.length (), nargs);
for (unsigned int i = 0; i < n; i++)
if (ipa_is_param_used_by_indirect_call (params_summary, i)
&& ctx.m_known_vals[i])
{
m_known_vals = ctx.m_known_vals.copy ();
break;
}
}
m_known_contexts = vNULL;
if (ctx.m_known_contexts.exists ())
{
unsigned int n = MIN (ctx.m_known_contexts.length (), nargs);
for (unsigned int i = 0; i < n; i++)
if (ipa_is_param_used_by_polymorphic_call (params_summary, i)
&& !ctx.m_known_contexts[i].useless_p ())
{
m_known_contexts = ctx.m_known_contexts.copy ();
break;
}
}
m_known_aggs = vNULL;
if (ctx.m_known_aggs.exists ())
{
unsigned int n = MIN (ctx.m_known_aggs.length (), nargs);
for (unsigned int i = 0; i < n; i++)
if (ipa_is_param_used_by_indirect_call (params_summary, i)
&& !ctx.m_known_aggs[i].is_empty ())
{
m_known_aggs = ipa_copy_agg_values (ctx.m_known_aggs);
break;
}
}
}
/* Release memory used by known_vals/contexts/aggs vectors.
If ALL is true release also inline_param_summary.
This happens when context was previously duplicated to be stored
into cache. */
void
ipa_call_context::release (bool all)
{
/* See if context is initialized at first place. */
if (!m_node)
return;
ipa_release_agg_values (m_known_aggs, all);
if (all)
{
m_known_vals.release ();
m_known_contexts.release ();
m_inline_param_summary.release ();
}
}
/* Return true if CTX describes the same call context as THIS. */
bool
ipa_call_context::equal_to (const ipa_call_context &ctx)
{
if (m_node != ctx.m_node
|| m_possible_truths != ctx.m_possible_truths
|| m_nonspec_possible_truths != ctx.m_nonspec_possible_truths)
return false;
class ipa_node_params *params_summary = IPA_NODE_REF (m_node);
unsigned int nargs = params_summary
? ipa_get_param_count (params_summary) : 0;
if (m_inline_param_summary.exists () || ctx.m_inline_param_summary.exists ())
{
for (unsigned int i = 0; i < nargs; i++)
{
if (!ipa_is_param_used_by_ipa_predicates (params_summary, i))
continue;
if (i >= m_inline_param_summary.length ()
|| m_inline_param_summary[i].useless_p ())
{
if (i < ctx.m_inline_param_summary.length ()
&& !ctx.m_inline_param_summary[i].useless_p ())
return false;
continue;
}
if (i >= ctx.m_inline_param_summary.length ()
|| ctx.m_inline_param_summary[i].useless_p ())
{
if (i < m_inline_param_summary.length ()
&& !m_inline_param_summary[i].useless_p ())
return false;
continue;
}
if (!m_inline_param_summary[i].equal_to
(ctx.m_inline_param_summary[i]))
return false;
}
}
if (m_known_vals.exists () || ctx.m_known_vals.exists ())
{
for (unsigned int i = 0; i < nargs; i++)
{
if (!ipa_is_param_used_by_indirect_call (params_summary, i))
continue;
if (i >= m_known_vals.length () || !m_known_vals[i])
{
if (i < ctx.m_known_vals.length () && ctx.m_known_vals[i])
return false;
continue;
}
if (i >= ctx.m_known_vals.length () || !ctx.m_known_vals[i])
{
if (i < m_known_vals.length () && m_known_vals[i])
return false;
continue;
}
if (m_known_vals[i] != ctx.m_known_vals[i])
return false;
}
}
if (m_known_contexts.exists () || ctx.m_known_contexts.exists ())
{
for (unsigned int i = 0; i < nargs; i++)
{
if (!ipa_is_param_used_by_polymorphic_call (params_summary, i))
continue;
if (i >= m_known_contexts.length ()
|| m_known_contexts[i].useless_p ())
{
if (i < ctx.m_known_contexts.length ()
&& !ctx.m_known_contexts[i].useless_p ())
return false;
continue;
}
if (i >= ctx.m_known_contexts.length ()
|| ctx.m_known_contexts[i].useless_p ())
{
if (i < m_known_contexts.length ()
&& !m_known_contexts[i].useless_p ())
return false;
continue;
}
if (!m_known_contexts[i].equal_to
(ctx.m_known_contexts[i]))
return false;
}
}
if (m_known_aggs.exists () || ctx.m_known_aggs.exists ())
{
for (unsigned int i = 0; i < nargs; i++)
{
if (!ipa_is_param_used_by_indirect_call (params_summary, i))
continue;
if (i >= m_known_aggs.length () || m_known_aggs[i].is_empty ())
{
if (i < ctx.m_known_aggs.length ()
&& !ctx.m_known_aggs[i].is_empty ())
return false;
continue;
}
if (i >= ctx.m_known_aggs.length ()
|| ctx.m_known_aggs[i].is_empty ())
{
if (i < m_known_aggs.length ()
&& !m_known_aggs[i].is_empty ())
return false;
continue;
}
if (!m_known_aggs[i].equal_to (ctx.m_known_aggs[i]))
return false;
}
}
return true;
}
/* Estimate size and time needed to execute call in the given context.
Additionally determine hints determined by the context. Finally compute
minimal size needed for the call that is independent on the call context and
can be used for fast estimates. Return the values in RET_SIZE,
RET_MIN_SIZE, RET_TIME and RET_HINTS. */
void
ipa_call_context::estimate_size_and_time (int *ret_size,
int *ret_min_size,
sreal *ret_time,
sreal *ret_nonspecialized_time,
ipa_hints *ret_hints)
{
class ipa_fn_summary *info = ipa_fn_summaries->get (m_node);
size_time_entry *e;
int size = 0;
sreal time = 0;
int min_size = 0;
ipa_hints hints = 0;
int i;
if (dump_file && (dump_flags & TDF_DETAILS))
{
bool found = false;
fprintf (dump_file, " Estimating body: %s\n"
" Known to be false: ", m_node->dump_name ());
for (i = predicate::not_inlined_condition;
i < (predicate::first_dynamic_condition
+ (int) vec_safe_length (info->conds)); i++)
if (!(m_possible_truths & (1 << i)))
{
if (found)
fprintf (dump_file, ", ");
found = true;
dump_condition (dump_file, info->conds, i);
}
}
if (m_node->callees || m_node->indirect_calls)
estimate_calls_size_and_time (m_node, &size, &min_size,
ret_time ? &time : NULL,
ret_hints ? &hints : NULL, m_possible_truths,
m_known_vals, m_known_contexts, m_known_aggs);
sreal nonspecialized_time = time;
min_size += (*info->size_time_table)[0].size;
for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
{
bool exec = e->exec_predicate.evaluate (m_nonspec_possible_truths);
/* Because predicates are conservative, it can happen that nonconst is 1
but exec is 0. */
if (exec)
{
bool nonconst = e->nonconst_predicate.evaluate (m_possible_truths);
gcc_checking_assert (e->time >= 0);
gcc_checking_assert (time >= 0);
/* We compute specialized size only because size of nonspecialized
copy is context independent.
The difference between nonspecialized execution and specialized is
that nonspecialized is not going to have optimized out computations
known to be constant in a specialized setting. */
if (nonconst)
size += e->size;
if (!ret_time)
continue;
nonspecialized_time += e->time;
if (!nonconst)
;
else if (!m_inline_param_summary.exists ())
{
if (nonconst)
time += e->time;
}
else
{
int prob = e->nonconst_predicate.probability
(info->conds, m_possible_truths,
m_inline_param_summary);
gcc_checking_assert (prob >= 0);
gcc_checking_assert (prob <= REG_BR_PROB_BASE);
if (prob == REG_BR_PROB_BASE)
time += e->time;
else
time += e->time * prob / REG_BR_PROB_BASE;
}
gcc_checking_assert (time >= 0);
}
}
gcc_checking_assert ((*info->size_time_table)[0].exec_predicate == true);
gcc_checking_assert ((*info->size_time_table)[0].nonconst_predicate == true);
gcc_checking_assert (min_size >= 0);
gcc_checking_assert (size >= 0);
gcc_checking_assert (time >= 0);
/* nonspecialized_time should be always bigger than specialized time.
Roundoff issues however may get into the way. */
gcc_checking_assert ((nonspecialized_time - time * 99 / 100) >= -1);
/* Roundoff issues may make specialized time bigger than nonspecialized
time. We do not really want that to happen because some heuristics
may get confused by seeing negative speedups. */
if (time > nonspecialized_time)
time = nonspecialized_time;
if (ret_hints)
{
if (info->loop_iterations
&& !info->loop_iterations->evaluate (m_possible_truths))
hints |= INLINE_HINT_loop_iterations;
if (info->loop_stride
&& !info->loop_stride->evaluate (m_possible_truths))
hints |= INLINE_HINT_loop_stride;
if (info->scc_no)
hints |= INLINE_HINT_in_scc;
if (DECL_DECLARED_INLINE_P (m_node->decl))
hints |= INLINE_HINT_declared_inline;
}
size = RDIV (size, ipa_fn_summary::size_scale);
min_size = RDIV (min_size, ipa_fn_summary::size_scale);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\n size:%i time:%f nonspec time:%f\n", (int) size,
time.to_double (), nonspecialized_time.to_double ());
if (ret_time)
*ret_time = time;
if (ret_nonspecialized_time)
*ret_nonspecialized_time = nonspecialized_time;
if (ret_size)
*ret_size = size;
if (ret_min_size)
*ret_min_size = min_size;
if (ret_hints)
*ret_hints = hints;
return;
}
/* Estimate size and time needed to execute callee of EDGE assuming that
parameters known to be constant at caller of EDGE are propagated.
KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
and types for parameters. */
void
estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
vec known_vals,
vec
known_contexts,
vec known_aggs,
int *ret_size, sreal *ret_time,
sreal *ret_nonspec_time,
ipa_hints *hints)
{
clause_t clause, nonspec_clause;
/* TODO: Also pass known value ranges. */
evaluate_conditions_for_known_args (node, false, known_vals, vNULL,
known_aggs, &clause, &nonspec_clause);
ipa_call_context ctx (node, clause, nonspec_clause,
known_vals, known_contexts,
known_aggs, vNULL);
ctx.estimate_size_and_time (ret_size, NULL, ret_time,
ret_nonspec_time, hints);
}
/* Return stack frame offset where frame of NODE is supposed to start inside
of the function it is inlined to.
Return 0 for functions that are not inlined. */
HOST_WIDE_INT
ipa_get_stack_frame_offset (struct cgraph_node *node)
{
HOST_WIDE_INT offset = 0;
if (!node->inlined_to)
return 0;
node = node->callers->caller;
while (true)
{
offset += ipa_size_summaries->get (node)->estimated_self_stack_size;
if (!node->inlined_to)
return offset;
node = node->callers->caller;
}
}
/* Update summary information of inline clones after inlining.
Compute peak stack usage. */
static void
inline_update_callee_summaries (struct cgraph_node *node, int depth)
{
struct cgraph_edge *e;
ipa_propagate_frequency (node);
for (e = node->callees; e; e = e->next_callee)
{
if (!e->inline_failed)
inline_update_callee_summaries (e->callee, depth);
else
ipa_call_summaries->get (e)->loop_depth += depth;
}
for (e = node->indirect_calls; e; e = e->next_callee)
ipa_call_summaries->get (e)->loop_depth += depth;
}
/* Update change_prob of EDGE after INLINED_EDGE has been inlined.
When function A is inlined in B and A calls C with parameter that
changes with probability PROB1 and C is known to be passthrough
of argument if B that change with probability PROB2, the probability
of change is now PROB1*PROB2. */
static void
remap_edge_change_prob (struct cgraph_edge *inlined_edge,
struct cgraph_edge *edge)
{
if (ipa_node_params_sum)
{
int i;
class ipa_edge_args *args = IPA_EDGE_REF (edge);
if (!args)
return;
class ipa_call_summary *es = ipa_call_summaries->get (edge);
class ipa_call_summary *inlined_es
= ipa_call_summaries->get (inlined_edge);
if (es->param.length () == 0)
return;
for (i = 0; i < ipa_get_cs_argument_count (args); i++)
{
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
int id = jfunc->type == IPA_JF_PASS_THROUGH
? ipa_get_jf_pass_through_formal_id (jfunc)
: ipa_get_jf_ancestor_formal_id (jfunc);
if (id < (int) inlined_es->param.length ())
{
int prob1 = es->param[i].change_prob;
int prob2 = inlined_es->param[id].change_prob;
int prob = combine_probabilities (prob1, prob2);
if (prob1 && prob2 && !prob)
prob = 1;
es->param[i].change_prob = prob;
}
}
}
}
}
/* Update edge summaries of NODE after INLINED_EDGE has been inlined.
Remap predicates of callees of NODE. Rest of arguments match
remap_predicate.
Also update change probabilities. */
static void
remap_edge_summaries (struct cgraph_edge *inlined_edge,
struct cgraph_node *node,
class ipa_fn_summary *info,
class ipa_node_params *params_summary,
class ipa_fn_summary *callee_info,
vec operand_map,
vec offset_map,
clause_t possible_truths,
predicate *toplev_predicate)
{
struct cgraph_edge *e, *next;
for (e = node->callees; e; e = next)
{
predicate p;
next = e->next_callee;
if (e->inline_failed)
{
class ipa_call_summary *es = ipa_call_summaries->get (e);
remap_edge_change_prob (inlined_edge, e);
if (es->predicate)
{
p = es->predicate->remap_after_inlining
(info, params_summary,
callee_info, operand_map,
offset_map, possible_truths,
*toplev_predicate);
edge_set_predicate (e, &p);
}
else
edge_set_predicate (e, toplev_predicate);
}
else
remap_edge_summaries (inlined_edge, e->callee, info,
params_summary, callee_info,
operand_map, offset_map, possible_truths,
toplev_predicate);
}
for (e = node->indirect_calls; e; e = next)
{
class ipa_call_summary *es = ipa_call_summaries->get (e);
predicate p;
next = e->next_callee;
remap_edge_change_prob (inlined_edge, e);
if (es->predicate)
{
p = es->predicate->remap_after_inlining
(info, params_summary,
callee_info, operand_map, offset_map,
possible_truths, *toplev_predicate);
edge_set_predicate (e, &p);
}
else
edge_set_predicate (e, toplev_predicate);
}
}
/* Same as remap_predicate, but set result into hint *HINT. */
static void
remap_hint_predicate (class ipa_fn_summary *info,
class ipa_node_params *params_summary,
class ipa_fn_summary *callee_info,
predicate **hint,
vec operand_map,
vec offset_map,
clause_t possible_truths,
predicate *toplev_predicate)
{
predicate p;
if (!*hint)
return;
p = (*hint)->remap_after_inlining
(info, params_summary, callee_info,
operand_map, offset_map,
possible_truths, *toplev_predicate);
if (p != false && p != true)
{
if (!*hint)
set_hint_predicate (hint, p);
else
**hint &= p;
}
}
/* We inlined EDGE. Update summary of the function we inlined into. */
void
ipa_merge_fn_summary_after_inlining (struct cgraph_edge *edge)
{
ipa_fn_summary *callee_info = ipa_fn_summaries->get (edge->callee);
struct cgraph_node *to = (edge->caller->inlined_to
? edge->caller->inlined_to : edge->caller);
class ipa_fn_summary *info = ipa_fn_summaries->get (to);
clause_t clause = 0; /* not_inline is known to be false. */
size_time_entry *e;
auto_vec operand_map;
auto_vec offset_map;
int i;
predicate toplev_predicate;
class ipa_call_summary *es = ipa_call_summaries->get (edge);
class ipa_node_params *params_summary = (ipa_node_params_sum
? IPA_NODE_REF (to) : NULL);
if (es->predicate)
toplev_predicate = *es->predicate;
else
toplev_predicate = true;
info->fp_expressions |= callee_info->fp_expressions;
if (callee_info->conds)
{
auto_vec known_vals;
auto_vec known_aggs;
evaluate_properties_for_edge (edge, true, &clause, NULL,
&known_vals, NULL, &known_aggs);
}
if (ipa_node_params_sum && callee_info->conds)
{
class ipa_edge_args *args = IPA_EDGE_REF (edge);
int count = args ? ipa_get_cs_argument_count (args) : 0;
int i;
if (count)
{
operand_map.safe_grow_cleared (count);
offset_map.safe_grow_cleared (count);
}
for (i = 0; i < count; i++)
{
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
int map = -1;
/* TODO: handle non-NOPs when merging. */
if (jfunc->type == IPA_JF_PASS_THROUGH)
{
if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
map = ipa_get_jf_pass_through_formal_id (jfunc);
if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
offset_map[i] = -1;
}
else if (jfunc->type == IPA_JF_ANCESTOR)
{
HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
if (offset >= 0 && offset < INT_MAX)
{
map = ipa_get_jf_ancestor_formal_id (jfunc);
if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
offset = -1;
offset_map[i] = offset;
}
}
operand_map[i] = map;
gcc_assert (map < ipa_get_param_count (params_summary));
}
}
sreal freq = edge->sreal_frequency ();
for (i = 0; vec_safe_iterate (callee_info->size_time_table, i, &e); i++)
{
predicate p;
p = e->exec_predicate.remap_after_inlining
(info, params_summary,
callee_info, operand_map,
offset_map, clause,
toplev_predicate);
predicate nonconstp;
nonconstp = e->nonconst_predicate.remap_after_inlining
(info, params_summary,
callee_info, operand_map,
offset_map, clause,
toplev_predicate);
if (p != false && nonconstp != false)
{
sreal add_time = ((sreal)e->time * freq);
int prob = e->nonconst_predicate.probability (callee_info->conds,
clause, es->param);
if (prob != REG_BR_PROB_BASE)
add_time = add_time * prob / REG_BR_PROB_BASE;
if (prob != REG_BR_PROB_BASE
&& dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\t\tScaling time by probability:%f\n",
(double) prob / REG_BR_PROB_BASE);
}
info->account_size_time (e->size, add_time, p, nonconstp);
}
}
remap_edge_summaries (edge, edge->callee, info, params_summary,
callee_info, operand_map,
offset_map, clause, &toplev_predicate);
remap_hint_predicate (info, params_summary, callee_info,
&callee_info->loop_iterations,
operand_map, offset_map, clause, &toplev_predicate);
remap_hint_predicate (info, params_summary, callee_info,
&callee_info->loop_stride,
operand_map, offset_map, clause, &toplev_predicate);
HOST_WIDE_INT stack_frame_offset = ipa_get_stack_frame_offset (edge->callee);
HOST_WIDE_INT peak = stack_frame_offset + callee_info->estimated_stack_size;
if (info->estimated_stack_size < peak)
info->estimated_stack_size = peak;
inline_update_callee_summaries (edge->callee, es->loop_depth);
if (info->call_size_time_table)
{
int edge_size = 0;
sreal edge_time = 0;
estimate_edge_size_and_time (edge, &edge_size, NULL, &edge_time, vNULL,
vNULL, vNULL, 0);
/* Unaccount size and time of the optimized out call. */
info->account_size_time (-edge_size, -edge_time,
es->predicate ? *es->predicate : true,
es->predicate ? *es->predicate : true,
true);
/* Account new calls. */
summarize_calls_size_and_time (edge->callee, info);
}
/* Free summaries that are not maintained for inline clones/edges. */
ipa_call_summaries->remove (edge);
ipa_fn_summaries->remove (edge->callee);
ipa_remove_from_growth_caches (edge);
}
/* For performance reasons ipa_merge_fn_summary_after_inlining is not updating
overall size and time. Recompute it.
If RESET is true also recompute call_time_size_table. */
void
ipa_update_overall_fn_summary (struct cgraph_node *node, bool reset)
{
class ipa_fn_summary *info = ipa_fn_summaries->get (node);
class ipa_size_summary *size_info = ipa_size_summaries->get (node);
size_time_entry *e;
int i;
size_info->size = 0;
info->time = 0;
for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
{
size_info->size += e->size;
info->time += e->time;
}
info->min_size = (*info->size_time_table)[0].size;
if (reset)
vec_free (info->call_size_time_table);
if (node->callees || node->indirect_calls)
estimate_calls_size_and_time (node, &size_info->size, &info->min_size,
&info->time, NULL,
~(clause_t) (1 << predicate::false_condition),
vNULL, vNULL, vNULL);
size_info->size = RDIV (size_info->size, ipa_fn_summary::size_scale);
info->min_size = RDIV (info->min_size, ipa_fn_summary::size_scale);
}
/* This function performs intraprocedural analysis in NODE that is required to
inline indirect calls. */
static void
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
{
ipa_analyze_node (node);
if (dump_file && (dump_flags & TDF_DETAILS))
{
ipa_print_node_params (dump_file, node);
ipa_print_node_jump_functions (dump_file, node);
}
}
/* Note function body size. */
void
inline_analyze_function (struct cgraph_node *node)
{
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
if (dump_file)
fprintf (dump_file, "\nAnalyzing function: %s\n", node->dump_name ());
if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
inline_indirect_intraprocedural_analysis (node);
compute_fn_summary (node, false);
if (!optimize)
{
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
for (e = node->indirect_calls; e; e = e->next_callee)
e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
}
pop_cfun ();
}
/* Called when new function is inserted to callgraph late. */
void
ipa_fn_summary_t::insert (struct cgraph_node *node, ipa_fn_summary *)
{
inline_analyze_function (node);
}
/* Note function body size. */
static void
ipa_fn_summary_generate (void)
{
struct cgraph_node *node;
FOR_EACH_DEFINED_FUNCTION (node)
if (DECL_STRUCT_FUNCTION (node->decl))
node->versionable = tree_versionable_function_p (node->decl);
ipa_fn_summary_alloc ();
ipa_fn_summaries->enable_insertion_hook ();
ipa_register_cgraph_hooks ();
FOR_EACH_DEFINED_FUNCTION (node)
if (!node->alias
&& (flag_generate_lto || flag_generate_offload|| flag_wpa
|| opt_for_fn (node->decl, optimize)))
inline_analyze_function (node);
}
/* Write inline summary for edge E to OB. */
static void
read_ipa_call_summary (class lto_input_block *ib, struct cgraph_edge *e,
bool prevails)
{
class ipa_call_summary *es = prevails
? ipa_call_summaries->get_create (e) : NULL;
predicate p;
int length, i;
int size = streamer_read_uhwi (ib);
int time = streamer_read_uhwi (ib);
int depth = streamer_read_uhwi (ib);
if (es)
{
es->call_stmt_size = size;
es->call_stmt_time = time;
es->loop_depth = depth;
}
bitpack_d bp = streamer_read_bitpack (ib);
if (es)
es->is_return_callee_uncaptured = bp_unpack_value (&bp, 1);
else
bp_unpack_value (&bp, 1);
p.stream_in (ib);
if (es)
edge_set_predicate (e, &p);
length = streamer_read_uhwi (ib);
if (length && es && e->possibly_call_in_translation_unit_p ())
{
es->param.safe_grow_cleared (length);
for (i = 0; i < length; i++)
es->param[i].change_prob = streamer_read_uhwi (ib);
}
else
{
for (i = 0; i < length; i++)
streamer_read_uhwi (ib);
}
}
/* Stream in inline summaries from the section. */
static void
inline_read_section (struct lto_file_decl_data *file_data, const char *data,
size_t len)
{
const struct lto_function_header *header =
(const struct lto_function_header *) data;
const int cfg_offset = sizeof (struct lto_function_header);
const int main_offset = cfg_offset + header->cfg_size;
const int string_offset = main_offset + header->main_size;
class data_in *data_in;
unsigned int i, count2, j;
unsigned int f_count;
lto_input_block ib ((const char *) data + main_offset, header->main_size,
file_data->mode_table);
data_in =
lto_data_in_create (file_data, (const char *) data + string_offset,
header->string_size, vNULL);
f_count = streamer_read_uhwi (&ib);
for (i = 0; i < f_count; i++)
{
unsigned int index;
struct cgraph_node *node;
class ipa_fn_summary *info;
class ipa_node_params *params_summary;
class ipa_size_summary *size_info;
lto_symtab_encoder_t encoder;
struct bitpack_d bp;
struct cgraph_edge *e;
predicate p;
index = streamer_read_uhwi (&ib);
encoder = file_data->symtab_node_encoder;
node = dyn_cast (lto_symtab_encoder_deref (encoder,
index));
info = node->prevailing_p () ? ipa_fn_summaries->get_create (node) : NULL;
params_summary = node->prevailing_p () ? IPA_NODE_REF (node) : NULL;
size_info = node->prevailing_p ()
? ipa_size_summaries->get_create (node) : NULL;
int stack_size = streamer_read_uhwi (&ib);
int size = streamer_read_uhwi (&ib);
sreal time = sreal::stream_in (&ib);
if (info)
{
info->estimated_stack_size
= size_info->estimated_self_stack_size = stack_size;
size_info->size = size_info->self_size = size;
info->time = time;
}
bp = streamer_read_bitpack (&ib);
if (info)
{
info->inlinable = bp_unpack_value (&bp, 1);
/* On the side of streaming out, there is still one bit
streamed out between inlinable and fp_expressions bits,
which was used for cilk+ before but now always false.
To remove the bit packing need to bump LTO minor version,
so unpack a dummy bit here to keep consistent instead. */
bp_unpack_value (&bp, 1);
info->fp_expressions = bp_unpack_value (&bp, 1);
}
else
{
bp_unpack_value (&bp, 1);
bp_unpack_value (&bp, 1);
bp_unpack_value (&bp, 1);
}
count2 = streamer_read_uhwi (&ib);
gcc_assert (!info || !info->conds);
if (info)
vec_safe_reserve_exact (info->conds, count2);
for (j = 0; j < count2; j++)
{
struct condition c;
unsigned int k, count3;
c.operand_num = streamer_read_uhwi (&ib);
c.code = (enum tree_code) streamer_read_uhwi (&ib);
c.type = stream_read_tree (&ib, data_in);
c.val = stream_read_tree (&ib, data_in);
bp = streamer_read_bitpack (&ib);
c.agg_contents = bp_unpack_value (&bp, 1);
c.by_ref = bp_unpack_value (&bp, 1);
if (c.agg_contents)
c.offset = streamer_read_uhwi (&ib);
count3 = streamer_read_uhwi (&ib);
c.param_ops = NULL;
if (info)
vec_safe_reserve_exact (c.param_ops, count3);
if (params_summary)
ipa_set_param_used_by_ipa_predicates
(params_summary, c.operand_num, true);
for (k = 0; k < count3; k++)
{
struct expr_eval_op op;
enum gimple_rhs_class rhs_class;
op.code = (enum tree_code) streamer_read_uhwi (&ib);
op.type = stream_read_tree (&ib, data_in);
switch (rhs_class = get_gimple_rhs_class (op.code))
{
case GIMPLE_UNARY_RHS:
op.index = 0;
op.val[0] = NULL_TREE;
op.val[1] = NULL_TREE;
break;
case GIMPLE_BINARY_RHS:
case GIMPLE_TERNARY_RHS:
bp = streamer_read_bitpack (&ib);
op.index = bp_unpack_value (&bp, 2);
op.val[0] = stream_read_tree (&ib, data_in);
if (rhs_class == GIMPLE_BINARY_RHS)
op.val[1] = NULL_TREE;
else
op.val[1] = stream_read_tree (&ib, data_in);
break;
default:
fatal_error (UNKNOWN_LOCATION,
"invalid fnsummary in LTO stream");
}
if (info)
c.param_ops->quick_push (op);
}
if (info)
info->conds->quick_push (c);
}
count2 = streamer_read_uhwi (&ib);
gcc_assert (!info || !info->size_time_table);
if (info && count2)
vec_safe_reserve_exact (info->size_time_table, count2);
for (j = 0; j < count2; j++)
{
class size_time_entry e;
e.size = streamer_read_uhwi (&ib);
e.time = sreal::stream_in (&ib);
e.exec_predicate.stream_in (&ib);
e.nonconst_predicate.stream_in (&ib);
if (info)
info->size_time_table->quick_push (e);
}
p.stream_in (&ib);
if (info)
set_hint_predicate (&info->loop_iterations, p);
p.stream_in (&ib);
if (info)
set_hint_predicate (&info->loop_stride, p);
for (e = node->callees; e; e = e->next_callee)
read_ipa_call_summary (&ib, e, info != NULL);
for (e = node->indirect_calls; e; e = e->next_callee)
read_ipa_call_summary (&ib, e, info != NULL);
}
lto_free_section_data (file_data, LTO_section_ipa_fn_summary, NULL, data,
len);
lto_data_in_delete (data_in);
}
/* Read inline summary. Jump functions are shared among ipa-cp
and inliner, so when ipa-cp is active, we don't need to write them
twice. */
static void
ipa_fn_summary_read (void)
{
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
struct lto_file_decl_data *file_data;
unsigned int j = 0;
ipa_prop_read_jump_functions ();
ipa_fn_summary_alloc ();
while ((file_data = file_data_vec[j++]))
{
size_t len;
const char *data
= lto_get_summary_section_data (file_data, LTO_section_ipa_fn_summary,
&len);
if (data)
inline_read_section (file_data, data, len);
else
/* Fatal error here. We do not want to support compiling ltrans units
with different version of compiler or different flags than the WPA
unit, so this should never happen. */
fatal_error (input_location,
"ipa inline summary is missing in input file");
}
ipa_register_cgraph_hooks ();
gcc_assert (ipa_fn_summaries);
ipa_fn_summaries->enable_insertion_hook ();
}
/* Write inline summary for edge E to OB. */
static void
write_ipa_call_summary (struct output_block *ob, struct cgraph_edge *e)
{
class ipa_call_summary *es = ipa_call_summaries->get (e);
int i;
streamer_write_uhwi (ob, es->call_stmt_size);
streamer_write_uhwi (ob, es->call_stmt_time);
streamer_write_uhwi (ob, es->loop_depth);
bitpack_d bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, es->is_return_callee_uncaptured, 1);
streamer_write_bitpack (&bp);
if (es->predicate)
es->predicate->stream_out (ob);
else
streamer_write_uhwi (ob, 0);
streamer_write_uhwi (ob, es->param.length ());
for (i = 0; i < (int) es->param.length (); i++)
streamer_write_uhwi (ob, es->param[i].change_prob);
}
/* Write inline summary for node in SET.
Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
active, we don't need to write them twice. */
static void
ipa_fn_summary_write (void)
{
struct output_block *ob = create_output_block (LTO_section_ipa_fn_summary);
lto_symtab_encoder_iterator lsei;
lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
unsigned int count = 0;
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
cgraph_node *cnode = lsei_cgraph_node (lsei);
if (cnode->definition && !cnode->alias)
count++;
}
streamer_write_uhwi (ob, count);
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
cgraph_node *cnode = lsei_cgraph_node (lsei);
if (cnode->definition && !cnode->alias)
{
class ipa_fn_summary *info = ipa_fn_summaries->get (cnode);
class ipa_size_summary *size_info = ipa_size_summaries->get (cnode);
struct bitpack_d bp;
struct cgraph_edge *edge;
int i;
size_time_entry *e;
struct condition *c;
streamer_write_uhwi (ob, lto_symtab_encoder_encode (encoder, cnode));
streamer_write_hwi (ob, size_info->estimated_self_stack_size);
streamer_write_hwi (ob, size_info->self_size);
info->time.stream_out (ob);
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, info->inlinable, 1);
bp_pack_value (&bp, false, 1);
bp_pack_value (&bp, info->fp_expressions, 1);
streamer_write_bitpack (&bp);
streamer_write_uhwi (ob, vec_safe_length (info->conds));
for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
{
int j;
struct expr_eval_op *op;
streamer_write_uhwi (ob, c->operand_num);
streamer_write_uhwi (ob, c->code);
stream_write_tree (ob, c->type, true);
stream_write_tree (ob, c->val, true);
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, c->agg_contents, 1);
bp_pack_value (&bp, c->by_ref, 1);
streamer_write_bitpack (&bp);
if (c->agg_contents)
streamer_write_uhwi (ob, c->offset);
streamer_write_uhwi (ob, vec_safe_length (c->param_ops));
for (j = 0; vec_safe_iterate (c->param_ops, j, &op); j++)
{
streamer_write_uhwi (ob, op->code);
stream_write_tree (ob, op->type, true);
if (op->val[0])
{
bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, op->index, 2);
streamer_write_bitpack (&bp);
stream_write_tree (ob, op->val[0], true);
if (op->val[1])
stream_write_tree (ob, op->val[1], true);
}
}
}
streamer_write_uhwi (ob, vec_safe_length (info->size_time_table));
for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
{
streamer_write_uhwi (ob, e->size);
e->time.stream_out (ob);
e->exec_predicate.stream_out (ob);
e->nonconst_predicate.stream_out (ob);
}
if (info->loop_iterations)
info->loop_iterations->stream_out (ob);
else
streamer_write_uhwi (ob, 0);
if (info->loop_stride)
info->loop_stride->stream_out (ob);
else
streamer_write_uhwi (ob, 0);
for (edge = cnode->callees; edge; edge = edge->next_callee)
write_ipa_call_summary (ob, edge);
for (edge = cnode->indirect_calls; edge; edge = edge->next_callee)
write_ipa_call_summary (ob, edge);
}
}
streamer_write_char_stream (ob->main_stream, 0);
produce_asm (ob, NULL);
destroy_output_block (ob);
ipa_prop_write_jump_functions ();
}
/* Release function summary. */
void
ipa_free_fn_summary (void)
{
if (!ipa_call_summaries)
return;
ggc_delete (ipa_fn_summaries);
ipa_fn_summaries = NULL;
delete ipa_call_summaries;
ipa_call_summaries = NULL;
edge_predicate_pool.release ();
/* During IPA this is one of largest datastructures to release. */
if (flag_wpa)
ggc_trim ();
}
/* Release function summary. */
void
ipa_free_size_summary (void)
{
if (!ipa_size_summaries)
return;
delete ipa_size_summaries;
ipa_size_summaries = NULL;
}
namespace {
const pass_data pass_data_local_fn_summary =
{
GIMPLE_PASS, /* type */
"local-fnsummary", /* name */
OPTGROUP_INLINE, /* optinfo_flags */
TV_INLINE_PARAMETERS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_local_fn_summary : public gimple_opt_pass
{
public:
pass_local_fn_summary (gcc::context *ctxt)
: gimple_opt_pass (pass_data_local_fn_summary, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_local_fn_summary (m_ctxt); }
virtual unsigned int execute (function *)
{
return compute_fn_summary_for_current ();
}
}; // class pass_local_fn_summary
} // anon namespace
gimple_opt_pass *
make_pass_local_fn_summary (gcc::context *ctxt)
{
return new pass_local_fn_summary (ctxt);
}
/* Free inline summary. */
namespace {
const pass_data pass_data_ipa_free_fn_summary =
{
SIMPLE_IPA_PASS, /* type */
"free-fnsummary", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IPA_FREE_INLINE_SUMMARY, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_ipa_free_fn_summary : public simple_ipa_opt_pass
{
public:
pass_ipa_free_fn_summary (gcc::context *ctxt)
: simple_ipa_opt_pass (pass_data_ipa_free_fn_summary, ctxt),
small_p (false)
{}
/* opt_pass methods: */
opt_pass *clone () { return new pass_ipa_free_fn_summary (m_ctxt); }
void set_pass_param (unsigned int n, bool param)
{
gcc_assert (n == 0);
small_p = param;
}
virtual bool gate (function *) { return true; }
virtual unsigned int execute (function *)
{
ipa_free_fn_summary ();
if (!flag_wpa)
ipa_free_size_summary ();
return 0;
}
private:
bool small_p;
}; // class pass_ipa_free_fn_summary
} // anon namespace
simple_ipa_opt_pass *
make_pass_ipa_free_fn_summary (gcc::context *ctxt)
{
return new pass_ipa_free_fn_summary (ctxt);
}
namespace {
const pass_data pass_data_ipa_fn_summary =
{
IPA_PASS, /* type */
"fnsummary", /* name */
OPTGROUP_INLINE, /* optinfo_flags */
TV_IPA_FNSUMMARY, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_dump_symtab ), /* todo_flags_finish */
};
class pass_ipa_fn_summary : public ipa_opt_pass_d
{
public:
pass_ipa_fn_summary (gcc::context *ctxt)
: ipa_opt_pass_d (pass_data_ipa_fn_summary, ctxt,
ipa_fn_summary_generate, /* generate_summary */
ipa_fn_summary_write, /* write_summary */
ipa_fn_summary_read, /* read_summary */
NULL, /* write_optimization_summary */
NULL, /* read_optimization_summary */
NULL, /* stmt_fixup */
0, /* function_transform_todo_flags_start */
NULL, /* function_transform */
NULL) /* variable_transform */
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return 0; }
}; // class pass_ipa_fn_summary
} // anon namespace
ipa_opt_pass_d *
make_pass_ipa_fn_summary (gcc::context *ctxt)
{
return new pass_ipa_fn_summary (ctxt);
}
/* Reset all state within ipa-fnsummary.c so that we can rerun the compiler
within the same process. For use by toplev::finalize. */
void
ipa_fnsummary_c_finalize (void)
{
ipa_free_fn_summary ();
}