;; ARM NEON coprocessor Machine Description ;; Copyright (C) 2006-2020 Free Software Foundation, Inc. ;; Written by CodeSourcery. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . ;; Attribute used to permit string comparisons against in ;; type attribute definitions. (define_attr "vqh_mnem" "vadd,vmin,vmax" (const_string "vadd")) (define_insn "unaligned_storev8qi" [(set (match_operand:V8QI 0 "memory_operand" "=Un") (unspec:V8QI [(match_operand:V8QI 1 "s_register_operand" "w")] UNSPEC_UNALIGNED_STORE))] "TARGET_NEON" "* return output_move_neon (operands); " [(set_attr "type" "neon_store1_1reg")]) (define_insn "*neon_mov" [(set (match_operand:VDXMOV 0 "nonimmediate_operand" "=w,Un,w, w, w, ?r,?w,?r, ?Us,*r") (match_operand:VDXMOV 1 "general_operand" " w,w, Dm,Dn,Uni, w, r, Usi,r,*r"))] "TARGET_NEON && (register_operand (operands[0], mode) || register_operand (operands[1], mode))" { if (which_alternative == 2 || which_alternative == 3) { int width, is_valid; static char templ[40]; is_valid = simd_immediate_valid_for_move (operands[1], mode, &operands[1], &width); gcc_assert (is_valid != 0); if (width == 0) return "vmov.f32\t%P0, %1 @ "; else sprintf (templ, "vmov.i%d\t%%P0, %%x1 @ ", width); return templ; } switch (which_alternative) { case 0: return "vmov\t%P0, %P1 @ "; case 1: case 4: return output_move_neon (operands); case 2: case 3: gcc_unreachable (); case 5: return "vmov\t%Q0, %R0, %P1 @ "; case 6: return "vmov\t%P0, %Q1, %R1 @ "; case 9: return "#"; default: return output_move_double (operands, true, NULL); } } [(set_attr "type" "neon_move,neon_store1_1reg,neon_move,\ neon_move,neon_load1_1reg, neon_to_gp,\ neon_from_gp,neon_load1_2reg, neon_store1_2reg,\ multiple") (set_attr "length" "4,4,4,4,4,4,4,8,8,8") (set_attr "arm_pool_range" "*,*,*,*,1020,*,*,1020,*,*") (set_attr "thumb2_pool_range" "*,*,*,*,1018,*,*,1018,*,*") (set_attr "neg_pool_range" "*,*,*,*,1004,*,*,1004,*,*")]) (define_insn "*neon_mov" [(set (match_operand:VQXMOV 0 "nonimmediate_operand" "=w,Un,w, w, w, ?r,?w,?r,?r, ?Us") (match_operand:VQXMOV 1 "general_operand" " w,w, Dm,DN,Uni, w, r, r, Usi, r"))] "TARGET_NEON && (register_operand (operands[0], mode) || register_operand (operands[1], mode))" { if (which_alternative == 2 || which_alternative == 3) { int width, is_valid; static char templ[40]; is_valid = simd_immediate_valid_for_move (operands[1], mode, &operands[1], &width); gcc_assert (is_valid != 0); if (width == 0) return "vmov.f32\t%q0, %1 @ "; else sprintf (templ, "vmov.i%d\t%%q0, %%1 @ ", width); return templ; } switch (which_alternative) { case 0: return "vmov\t%q0, %q1 @ "; case 1: case 4: return output_move_neon (operands); case 2: case 3: gcc_unreachable (); case 5: return "vmov\t%Q0, %R0, %e1 @ \;vmov\t%J0, %K0, %f1"; case 6: return "vmov\t%e0, %Q1, %R1 @ \;vmov\t%f0, %J1, %K1"; default: return output_move_quad (operands); } } [(set_attr "type" "neon_move_q,neon_store2_2reg_q,neon_move_q,\ neon_move_q,neon_load2_2reg_q,neon_to_gp_q,\ neon_from_gp_q,mov_reg,neon_load1_4reg,neon_store1_4reg") (set_attr "length" "4,8,4,4,8,8,8,16,8,16") (set_attr "arm_pool_range" "*,*,*,*,1020,*,*,*,1020,*") (set_attr "thumb2_pool_range" "*,*,*,*,1018,*,*,*,1018,*") (set_attr "neg_pool_range" "*,*,*,*,996,*,*,*,996,*")]) /* We define these mov expanders to match the standard mov$a optab to prevent the mid-end from trying to do a subreg for these modes which is the most inefficient way to expand the move. Also big-endian subreg's aren't allowed for a subset of modes, See TARGET_CAN_CHANGE_MODE_CLASS. Without these RTL generation patterns the mid-end would attempt to take a sub-reg and may ICE if it can't. */ (define_expand "movti" [(set (match_operand:TI 0 "nonimmediate_operand") (match_operand:TI 1 "general_operand"))] "TARGET_NEON" { gcc_checking_assert (aligned_operand (operands[0], TImode)); gcc_checking_assert (aligned_operand (operands[1], TImode)); if (can_create_pseudo_p ()) { if (!REG_P (operands[0])) operands[1] = force_reg (TImode, operands[1]); } }) (define_expand "mov" [(set (match_operand:VSTRUCT 0 "nonimmediate_operand") (match_operand:VSTRUCT 1 "general_operand"))] "TARGET_NEON || TARGET_HAVE_MVE" { gcc_checking_assert (aligned_operand (operands[0], mode)); gcc_checking_assert (aligned_operand (operands[1], mode)); if (can_create_pseudo_p ()) { if (!REG_P (operands[0])) operands[1] = force_reg (mode, operands[1]); } }) ;; The pattern mov where mode is v8hf, v4hf, v4bf and v8bf are split into ;; two groups. The pattern movv8hf is common for MVE and NEON, so it is moved ;; into vec-common.md file. Remaining mov expand patterns with half float and ;; bfloats are implemented below. (define_expand "mov" [(set (match_operand:VHFBF_split 0 "s_register_operand") (match_operand:VHFBF_split 1 "s_register_operand"))] "TARGET_NEON" { gcc_checking_assert (aligned_operand (operands[0], mode)); gcc_checking_assert (aligned_operand (operands[1], mode)); if (can_create_pseudo_p ()) { if (!REG_P (operands[0])) operands[1] = force_reg (mode, operands[1]); } }) (define_insn "*neon_mov" [(set (match_operand:VSTRUCT 0 "nonimmediate_operand" "=w,Ut,w") (match_operand:VSTRUCT 1 "general_operand" " w,w, Ut"))] "(TARGET_NEON || TARGET_HAVE_MVE) && (register_operand (operands[0], mode) || register_operand (operands[1], mode))" { switch (which_alternative) { case 0: return "#"; case 1: case 2: return output_move_neon (operands); default: gcc_unreachable (); } } [(set_attr "type" "neon_move_q,neon_store2_2reg_q,neon_load2_2reg_q") (set (attr "length") (symbol_ref "arm_attr_length_move_neon (insn)"))]) (define_split [(set (match_operand:EI 0 "s_register_operand" "") (match_operand:EI 1 "s_register_operand" ""))] "TARGET_NEON && reload_completed" [(set (match_dup 0) (match_dup 1)) (set (match_dup 2) (match_dup 3))] { int rdest = REGNO (operands[0]); int rsrc = REGNO (operands[1]); rtx dest[2], src[2]; dest[0] = gen_rtx_REG (TImode, rdest); src[0] = gen_rtx_REG (TImode, rsrc); dest[1] = gen_rtx_REG (DImode, rdest + 4); src[1] = gen_rtx_REG (DImode, rsrc + 4); neon_disambiguate_copy (operands, dest, src, 2); }) (define_split [(set (match_operand:OI 0 "s_register_operand" "") (match_operand:OI 1 "s_register_operand" ""))] "(TARGET_NEON || TARGET_HAVE_MVE)&& reload_completed" [(set (match_dup 0) (match_dup 1)) (set (match_dup 2) (match_dup 3))] { int rdest = REGNO (operands[0]); int rsrc = REGNO (operands[1]); rtx dest[2], src[2]; dest[0] = gen_rtx_REG (TImode, rdest); src[0] = gen_rtx_REG (TImode, rsrc); dest[1] = gen_rtx_REG (TImode, rdest + 4); src[1] = gen_rtx_REG (TImode, rsrc + 4); neon_disambiguate_copy (operands, dest, src, 2); }) (define_split [(set (match_operand:CI 0 "s_register_operand" "") (match_operand:CI 1 "s_register_operand" ""))] "TARGET_NEON && reload_completed" [(set (match_dup 0) (match_dup 1)) (set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] { int rdest = REGNO (operands[0]); int rsrc = REGNO (operands[1]); rtx dest[3], src[3]; dest[0] = gen_rtx_REG (TImode, rdest); src[0] = gen_rtx_REG (TImode, rsrc); dest[1] = gen_rtx_REG (TImode, rdest + 4); src[1] = gen_rtx_REG (TImode, rsrc + 4); dest[2] = gen_rtx_REG (TImode, rdest + 8); src[2] = gen_rtx_REG (TImode, rsrc + 8); neon_disambiguate_copy (operands, dest, src, 3); }) (define_split [(set (match_operand:XI 0 "s_register_operand" "") (match_operand:XI 1 "s_register_operand" ""))] "(TARGET_NEON || TARGET_HAVE_MVE) && reload_completed" [(set (match_dup 0) (match_dup 1)) (set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5)) (set (match_dup 6) (match_dup 7))] { int rdest = REGNO (operands[0]); int rsrc = REGNO (operands[1]); rtx dest[4], src[4]; dest[0] = gen_rtx_REG (TImode, rdest); src[0] = gen_rtx_REG (TImode, rsrc); dest[1] = gen_rtx_REG (TImode, rdest + 4); src[1] = gen_rtx_REG (TImode, rsrc + 4); dest[2] = gen_rtx_REG (TImode, rdest + 8); src[2] = gen_rtx_REG (TImode, rsrc + 8); dest[3] = gen_rtx_REG (TImode, rdest + 12); src[3] = gen_rtx_REG (TImode, rsrc + 12); neon_disambiguate_copy (operands, dest, src, 4); }) (define_expand "movmisalign" [(set (match_operand:VDQX 0 "neon_perm_struct_or_reg_operand") (unspec:VDQX [(match_operand:VDQX 1 "neon_perm_struct_or_reg_operand")] UNSPEC_MISALIGNED_ACCESS))] "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" { rtx adjust_mem; /* This pattern is not permitted to fail during expansion: if both arguments are non-registers (e.g. memory := constant, which can be created by the auto-vectorizer), force operand 1 into a register. */ if (!s_register_operand (operands[0], mode) && !s_register_operand (operands[1], mode)) operands[1] = force_reg (mode, operands[1]); if (s_register_operand (operands[0], mode)) adjust_mem = operands[1]; else adjust_mem = operands[0]; /* Legitimize address. */ if (!neon_vector_mem_operand (adjust_mem, 2, true)) XEXP (adjust_mem, 0) = force_reg (Pmode, XEXP (adjust_mem, 0)); }) (define_insn "*movmisalign_neon_store" [(set (match_operand:VDX 0 "neon_permissive_struct_operand" "=Um") (unspec:VDX [(match_operand:VDX 1 "s_register_operand" " w")] UNSPEC_MISALIGNED_ACCESS))] "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vst1.\t{%P1}, %A0" [(set_attr "type" "neon_store1_1reg")]) (define_insn "*movmisalign_neon_load" [(set (match_operand:VDX 0 "s_register_operand" "=w") (unspec:VDX [(match_operand:VDX 1 "neon_permissive_struct_operand" " Um")] UNSPEC_MISALIGNED_ACCESS))] "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vld1.\t{%P0}, %A1" [(set_attr "type" "neon_load1_1reg")]) (define_insn "*movmisalign_neon_store" [(set (match_operand:VQX 0 "neon_permissive_struct_operand" "=Um") (unspec:VQX [(match_operand:VQX 1 "s_register_operand" " w")] UNSPEC_MISALIGNED_ACCESS))] "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vst1.\t{%q1}, %A0" [(set_attr "type" "neon_store1_1reg")]) (define_insn "*movmisalign_neon_load" [(set (match_operand:VQX 0 "s_register_operand" "=w") (unspec:VQX [(match_operand:VQX 1 "neon_permissive_struct_operand" " Um")] UNSPEC_MISALIGNED_ACCESS))] "TARGET_NEON && !BYTES_BIG_ENDIAN && unaligned_access" "vld1.\t{%q0}, %A1" [(set_attr "type" "neon_load1_1reg")]) (define_insn "@vec_set_internal" [(set (match_operand:VD_LANE 0 "s_register_operand" "=w,w") (vec_merge:VD_LANE (vec_duplicate:VD_LANE (match_operand: 1 "nonimmediate_operand" "Um,r")) (match_operand:VD_LANE 3 "s_register_operand" "0,0") (match_operand:SI 2 "immediate_operand" "i,i")))] "TARGET_NEON" { int elt = ffs ((int) INTVAL (operands[2])) - 1; if (BYTES_BIG_ENDIAN) elt = GET_MODE_NUNITS (mode) - 1 - elt; operands[2] = GEN_INT (elt); if (which_alternative == 0) return "vld1.\t{%P0[%c2]}, %A1"; else return "vmov.\t%P0[%c2], %1"; } [(set_attr "type" "neon_load1_all_lanes,neon_from_gp")]) (define_insn "@vec_set_internal" [(set (match_operand:VQ2 0 "s_register_operand" "=w,w") (vec_merge:VQ2 (vec_duplicate:VQ2 (match_operand: 1 "nonimmediate_operand" "Um,r")) (match_operand:VQ2 3 "s_register_operand" "0,0") (match_operand:SI 2 "immediate_operand" "i,i")))] "TARGET_NEON" { HOST_WIDE_INT elem = ffs ((int) INTVAL (operands[2])) - 1; int half_elts = GET_MODE_NUNITS (mode) / 2; int elt = elem % half_elts; int hi = (elem / half_elts) * 2; int regno = REGNO (operands[0]); if (BYTES_BIG_ENDIAN) elt = half_elts - 1 - elt; operands[0] = gen_rtx_REG (mode, regno + hi); operands[2] = GEN_INT (elt); if (which_alternative == 0) return "vld1.\t{%P0[%c2]}, %A1"; else return "vmov.\t%P0[%c2], %1"; } [(set_attr "type" "neon_load1_all_lanes,neon_from_gp")] ) (define_insn "@vec_set_internal" [(set (match_operand:V2DI_ONLY 0 "s_register_operand" "=w,w") (vec_merge:V2DI_ONLY (vec_duplicate:V2DI_ONLY (match_operand:DI 1 "nonimmediate_operand" "Um,r")) (match_operand:V2DI_ONLY 3 "s_register_operand" "0,0") (match_operand:SI 2 "immediate_operand" "i,i")))] "TARGET_NEON" { HOST_WIDE_INT elem = ffs ((int) INTVAL (operands[2])) - 1; int regno = REGNO (operands[0]) + 2 * elem; operands[0] = gen_rtx_REG (DImode, regno); if (which_alternative == 0) return "vld1.64\t%P0, %A1"; else return "vmov\t%P0, %Q1, %R1"; } [(set_attr "type" "neon_load1_all_lanes_q,neon_from_gp_q")] ) (define_insn "vec_extract" [(set (match_operand: 0 "nonimmediate_operand" "=Um,r") (vec_select: (match_operand:VD_LANE 1 "s_register_operand" "w,w") (parallel [(match_operand:SI 2 "immediate_operand" "i,i")])))] "TARGET_NEON" { if (BYTES_BIG_ENDIAN) { int elt = INTVAL (operands[2]); elt = GET_MODE_NUNITS (mode) - 1 - elt; operands[2] = GEN_INT (elt); } if (which_alternative == 0) return "vst1.\t{%P1[%c2]}, %A0"; else return "vmov.\t%0, %P1[%c2]"; } [(set_attr "type" "neon_store1_one_lane,neon_to_gp")] ) ;; This pattern is renamed from "vec_extract" to ;; "neon_vec_extract" and this pattern is called ;; by define_expand in vec-common.md file. (define_insn "neon_vec_extract" [(set (match_operand: 0 "nonimmediate_operand" "=Um,r") (vec_select: (match_operand:VQ2 1 "s_register_operand" "w,w") (parallel [(match_operand:SI 2 "immediate_operand" "i,i")])))] "TARGET_NEON" { int half_elts = GET_MODE_NUNITS (mode) / 2; int elt = INTVAL (operands[2]) % half_elts; int hi = (INTVAL (operands[2]) / half_elts) * 2; int regno = REGNO (operands[1]); if (BYTES_BIG_ENDIAN) elt = half_elts - 1 - elt; operands[1] = gen_rtx_REG (mode, regno + hi); operands[2] = GEN_INT (elt); if (which_alternative == 0) return "vst1.\t{%P1[%c2]}, %A0"; else return "vmov.\t%0, %P1[%c2]"; } [(set_attr "type" "neon_store1_one_lane,neon_to_gp")] ) ;; This pattern is renamed from "vec_extractv2didi" to "neon_vec_extractv2didi" ;; and this pattern is called by define_expand in vec-common.md file. (define_insn "neon_vec_extractv2didi" [(set (match_operand:DI 0 "nonimmediate_operand" "=Um,r") (vec_select:DI (match_operand:V2DI 1 "s_register_operand" "w,w") (parallel [(match_operand:SI 2 "immediate_operand" "i,i")])))] "TARGET_NEON" { int regno = REGNO (operands[1]) + 2 * INTVAL (operands[2]); operands[1] = gen_rtx_REG (DImode, regno); if (which_alternative == 0) return "vst1.64\t{%P1}, %A0 @ v2di"; else return "vmov\t%Q0, %R0, %P1 @ v2di"; } [(set_attr "type" "neon_store1_one_lane_q,neon_to_gp_q")] ) (define_expand "vec_init" [(match_operand:VDQ 0 "s_register_operand") (match_operand 1 "" "")] "TARGET_NEON || TARGET_HAVE_MVE" { neon_expand_vector_init (operands[0], operands[1]); DONE; }) ;; Doubleword and quadword arithmetic. ;; NOTE: some other instructions also support 64-bit integer ;; element size, which we could potentially use for "long long" operations. (define_insn "*add3_neon" [(set (match_operand:VDQ 0 "s_register_operand" "=w") (plus:VDQ (match_operand:VDQ 1 "s_register_operand" "w") (match_operand:VDQ 2 "s_register_operand" "w")))] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" "vadd.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_addsub_s") (const_string "neon_add")))] ) ;; As with SFmode, full support for HFmode vector arithmetic is only available ;; when flag-unsafe-math-optimizations is enabled. ;; Add pattern with modes V8HF and V4HF is split into separate patterns to add ;; support for standard pattern addv8hf3 in MVE. Following pattern is called ;; from "addv8hf3" standard pattern inside vec-common.md file. (define_insn "addv8hf3_neon" [(set (match_operand:V8HF 0 "s_register_operand" "=w") (plus:V8HF (match_operand:V8HF 1 "s_register_operand" "w") (match_operand:V8HF 2 "s_register_operand" "w")))] "TARGET_NEON_FP16INST && flag_unsafe_math_optimizations" "vadd.f16\t%0, %1, %2" [(set_attr "type" "neon_fp_addsub_s_q")] ) (define_insn "addv4hf3" [(set (match_operand:V4HF 0 "s_register_operand" "=w") (plus:V4HF (match_operand:V4HF 1 "s_register_operand" "w") (match_operand:V4HF 2 "s_register_operand" "w")))] "TARGET_NEON_FP16INST && flag_unsafe_math_optimizations" "vadd.f16\t%0, %1, %2" [(set_attr "type" "neon_fp_addsub_s_q")] ) (define_insn "add3_fp16" [(set (match_operand:VH 0 "s_register_operand" "=w") (plus:VH (match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")))] "TARGET_NEON_FP16INST" "vadd.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_addsub_s") (const_string "neon_add")))] ) (define_insn "*sub3_neon" [(set (match_operand:VDQ 0 "s_register_operand" "=w") (minus:VDQ (match_operand:VDQ 1 "s_register_operand" "w") (match_operand:VDQ 2 "s_register_operand" "w")))] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" "vsub.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_addsub_s") (const_string "neon_sub")))] ) (define_insn "sub3" [(set (match_operand:VH 0 "s_register_operand" "=w") (minus:VH (match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")))] "TARGET_NEON_FP16INST && flag_unsafe_math_optimizations" "vsub.\t%0, %1, %2" [(set_attr "type" "neon_sub")] ) (define_insn "sub3_fp16" [(set (match_operand:VH 0 "s_register_operand" "=w") (minus:VH (match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")))] "TARGET_NEON_FP16INST" "vsub.\t%0, %1, %2" [(set_attr "type" "neon_sub")] ) (define_insn "*mul3_neon" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (mult:VDQW (match_operand:VDQW 1 "s_register_operand" "w") (match_operand:VDQW 2 "s_register_operand" "w")))] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" "vmul.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mul_s") (const_string "neon_mul_")))] ) /* Perform division using multiply-by-reciprocal. Reciprocal is calculated using Newton-Raphson method. Enabled with -funsafe-math-optimizations -freciprocal-math and disabled for -Os since it increases code size . */ (define_expand "div3" [(set (match_operand:VCVTF 0 "s_register_operand") (div:VCVTF (match_operand:VCVTF 1 "s_register_operand") (match_operand:VCVTF 2 "s_register_operand")))] "TARGET_NEON && !optimize_size && flag_reciprocal_math" { rtx rec = gen_reg_rtx (mode); rtx vrecps_temp = gen_reg_rtx (mode); /* Reciprocal estimate. */ emit_insn (gen_neon_vrecpe (rec, operands[2])); /* Perform 2 iterations of newton-raphson method. */ for (int i = 0; i < 2; i++) { emit_insn (gen_neon_vrecps (vrecps_temp, rec, operands[2])); emit_insn (gen_mul3 (rec, rec, vrecps_temp)); } /* We now have reciprocal in rec, perform operands[0] = operands[1] * rec. */ emit_insn (gen_mul3 (operands[0], operands[1], rec)); DONE; } ) (define_insn "mul3add_neon" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (plus:VDQW (mult:VDQW (match_operand:VDQW 2 "s_register_operand" "w") (match_operand:VDQW 3 "s_register_operand" "w")) (match_operand:VDQW 1 "s_register_operand" "0")))] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" "vmla.\t%0, %2, %3" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s") (const_string "neon_mla_")))] ) (define_insn "mul3add_neon" [(set (match_operand:VH 0 "s_register_operand" "=w") (plus:VH (mult:VH (match_operand:VH 2 "s_register_operand" "w") (match_operand:VH 3 "s_register_operand" "w")) (match_operand:VH 1 "s_register_operand" "0")))] "TARGET_NEON_FP16INST && (! || flag_unsafe_math_optimizations)" "vmla.f16\t%0, %2, %3" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "mul3negadd_neon" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (minus:VDQW (match_operand:VDQW 1 "s_register_operand" "0") (mult:VDQW (match_operand:VDQW 2 "s_register_operand" "w") (match_operand:VDQW 3 "s_register_operand" "w"))))] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" "vmls.\t%0, %2, %3" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s") (const_string "neon_mla_")))] ) ;; Fused multiply-accumulate ;; We define each insn twice here: ;; 1: with flag_unsafe_math_optimizations for the widening multiply phase ;; to be able to use when converting to FMA. ;; 2: without flag_unsafe_math_optimizations for the intrinsics to use. (define_insn "fma4" [(set (match_operand:VCVTF 0 "register_operand" "=w") (fma:VCVTF (match_operand:VCVTF 1 "register_operand" "w") (match_operand:VCVTF 2 "register_operand" "w") (match_operand:VCVTF 3 "register_operand" "0")))] "TARGET_NEON && TARGET_FMA && flag_unsafe_math_optimizations" "vfma.\\t%0, %1, %2" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "fma4_intrinsic" [(set (match_operand:VCVTF 0 "register_operand" "=w") (fma:VCVTF (match_operand:VCVTF 1 "register_operand" "w") (match_operand:VCVTF 2 "register_operand" "w") (match_operand:VCVTF 3 "register_operand" "0")))] "TARGET_NEON && TARGET_FMA" "vfma.\\t%0, %1, %2" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "fma4" [(set (match_operand:VH 0 "register_operand" "=w") (fma:VH (match_operand:VH 1 "register_operand" "w") (match_operand:VH 2 "register_operand" "w") (match_operand:VH 3 "register_operand" "0")))] "TARGET_NEON_FP16INST && flag_unsafe_math_optimizations" "vfma.\\t%0, %1, %2" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "fma4_intrinsic" [(set (match_operand:VH 0 "register_operand" "=w") (fma:VH (match_operand:VH 1 "register_operand" "w") (match_operand:VH 2 "register_operand" "w") (match_operand:VH 3 "register_operand" "0")))] "TARGET_NEON_FP16INST" "vfma.\\t%0, %1, %2" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "*fmsub4" [(set (match_operand:VCVTF 0 "register_operand" "=w") (fma:VCVTF (neg:VCVTF (match_operand:VCVTF 1 "register_operand" "w")) (match_operand:VCVTF 2 "register_operand" "w") (match_operand:VCVTF 3 "register_operand" "0")))] "TARGET_NEON && TARGET_FMA && flag_unsafe_math_optimizations" "vfms.\\t%0, %1, %2" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "fmsub4_intrinsic" [(set (match_operand:VCVTF 0 "register_operand" "=w") (fma:VCVTF (neg:VCVTF (match_operand:VCVTF 1 "register_operand" "w")) (match_operand:VCVTF 2 "register_operand" "w") (match_operand:VCVTF 3 "register_operand" "0")))] "TARGET_NEON && TARGET_FMA" "vfms.\\t%0, %1, %2" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "fmsub4_intrinsic" [(set (match_operand:VH 0 "register_operand" "=w") (fma:VH (neg:VH (match_operand:VH 1 "register_operand" "w")) (match_operand:VH 2 "register_operand" "w") (match_operand:VH 3 "register_operand" "0")))] "TARGET_NEON_FP16INST" "vfms.\\t%0, %1, %2" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "neon_vrint" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w")] NEON_VRINT))] "TARGET_NEON && TARGET_VFP5" "vrint.f32\\t%0, %1" [(set_attr "type" "neon_fp_round_")] ) (define_insn "neon_vcvt" [(set (match_operand: 0 "register_operand" "=w") (FIXUORS: (unspec:VCVTF [(match_operand:VCVTF 1 "register_operand" "w")] NEON_VCVT)))] "TARGET_NEON && TARGET_VFP5" "vcvt.32.f32\\t%0, %1" [(set_attr "type" "neon_fp_to_int_") (set_attr "predicable" "no")] ) (define_insn "ior3" [(set (match_operand:VDQ 0 "s_register_operand" "=w,w") (ior:VDQ (match_operand:VDQ 1 "s_register_operand" "w,0") (match_operand:VDQ 2 "neon_logic_op2" "w,Dl")))] "TARGET_NEON" { switch (which_alternative) { case 0: return "vorr\t%0, %1, %2"; case 1: return neon_output_logic_immediate ("vorr", &operands[2], mode, 0, VALID_NEON_QREG_MODE (mode)); default: gcc_unreachable (); } } [(set_attr "type" "neon_logic")] ) ;; The concrete forms of the Neon immediate-logic instructions are vbic and ;; vorr. We support the pseudo-instruction vand instead, because that ;; corresponds to the canonical form the middle-end expects to use for ;; immediate bitwise-ANDs. (define_insn "and3" [(set (match_operand:VDQ 0 "s_register_operand" "=w,w") (and:VDQ (match_operand:VDQ 1 "s_register_operand" "w,0") (match_operand:VDQ 2 "neon_inv_logic_op2" "w,DL")))] "TARGET_NEON" { switch (which_alternative) { case 0: return "vand\t%0, %1, %2"; case 1: return neon_output_logic_immediate ("vand", &operands[2], mode, 1, VALID_NEON_QREG_MODE (mode)); default: gcc_unreachable (); } } [(set_attr "type" "neon_logic")] ) (define_insn "orn3_neon" [(set (match_operand:VDQ 0 "s_register_operand" "=w") (ior:VDQ (not:VDQ (match_operand:VDQ 2 "s_register_operand" "w")) (match_operand:VDQ 1 "s_register_operand" "w")))] "TARGET_NEON" "vorn\t%0, %1, %2" [(set_attr "type" "neon_logic")] ) (define_insn "bic3_neon" [(set (match_operand:VDQ 0 "s_register_operand" "=w") (and:VDQ (not:VDQ (match_operand:VDQ 2 "s_register_operand" "w")) (match_operand:VDQ 1 "s_register_operand" "w")))] "TARGET_NEON" "vbic\t%0, %1, %2" [(set_attr "type" "neon_logic")] ) (define_insn "xor3" [(set (match_operand:VDQ 0 "s_register_operand" "=w") (xor:VDQ (match_operand:VDQ 1 "s_register_operand" "w") (match_operand:VDQ 2 "s_register_operand" "w")))] "TARGET_NEON" "veor\t%0, %1, %2" [(set_attr "type" "neon_logic")] ) (define_insn "one_cmpl2" [(set (match_operand:VDQ 0 "s_register_operand" "=w") (not:VDQ (match_operand:VDQ 1 "s_register_operand" "w")))] "TARGET_NEON" "vmvn\t%0, %1" [(set_attr "type" "neon_move")] ) (define_insn "abs2" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (abs:VDQW (match_operand:VDQW 1 "s_register_operand" "w")))] "TARGET_NEON" "vabs.\t%0, %1" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_abs_s") (const_string "neon_abs")))] ) (define_insn "neg2" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (neg:VDQW (match_operand:VDQW 1 "s_register_operand" "w")))] "TARGET_NEON" "vneg.\t%0, %1" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_neg_s") (const_string "neon_neg")))] ) (define_insn "2" [(set (match_operand:VH 0 "s_register_operand" "=w") (ABSNEG:VH (match_operand:VH 1 "s_register_operand" "w")))] "TARGET_NEON_FP16INST" "v.\t%0, %1" [(set_attr "type" "neon_abs")] ) (define_expand "neon_v" [(set (match_operand:VH 0 "s_register_operand") (ABSNEG:VH (match_operand:VH 1 "s_register_operand")))] "TARGET_NEON_FP16INST" { emit_insn (gen_2 (operands[0], operands[1])); DONE; }) (define_insn "neon_v" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w")] FP16_RND))] "TARGET_NEON_FP16INST" ".\t%0, %1" [(set_attr "type" "neon_fp_round_s")] ) (define_insn "neon_vrsqrte" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w")] UNSPEC_VRSQRTE))] "TARGET_NEON_FP16INST" "vrsqrte.f16\t%0, %1" [(set_attr "type" "neon_fp_rsqrte_s")] ) (define_insn "*umin3_neon" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (umin:VDQIW (match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w")))] "TARGET_NEON" "vmin.\t%0, %1, %2" [(set_attr "type" "neon_minmax")] ) (define_insn "*umax3_neon" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (umax:VDQIW (match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w")))] "TARGET_NEON" "vmax.\t%0, %1, %2" [(set_attr "type" "neon_minmax")] ) (define_insn "*smin3_neon" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (smin:VDQW (match_operand:VDQW 1 "s_register_operand" "w") (match_operand:VDQW 2 "s_register_operand" "w")))] "TARGET_NEON" "vmin.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_minmax_s") (const_string "neon_minmax")))] ) (define_insn "*smax3_neon" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (smax:VDQW (match_operand:VDQW 1 "s_register_operand" "w") (match_operand:VDQW 2 "s_register_operand" "w")))] "TARGET_NEON" "vmax.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_minmax_s") (const_string "neon_minmax")))] ) ; TODO: V2DI shifts are current disabled because there are bugs in the ; generic vectorizer code. It ends up creating a V2DI constructor with ; SImode elements. (define_insn "vashl3" [(set (match_operand:VDQIW 0 "s_register_operand" "=w,w") (ashift:VDQIW (match_operand:VDQIW 1 "s_register_operand" "w,w") (match_operand:VDQIW 2 "imm_lshift_or_reg_neon" "w,Dm")))] "TARGET_NEON" { switch (which_alternative) { case 0: return "vshl.\t%0, %1, %2"; case 1: return neon_output_shift_immediate ("vshl", 'i', &operands[2], mode, VALID_NEON_QREG_MODE (mode), true); default: gcc_unreachable (); } } [(set_attr "type" "neon_shift_reg, neon_shift_imm")] ) (define_insn "vashr3_imm" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (ashiftrt:VDQIW (match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "imm_for_neon_rshift_operand" "Dm")))] "TARGET_NEON" { return neon_output_shift_immediate ("vshr", 's', &operands[2], mode, VALID_NEON_QREG_MODE (mode), false); } [(set_attr "type" "neon_shift_imm")] ) (define_insn "vlshr3_imm" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (lshiftrt:VDQIW (match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "imm_for_neon_rshift_operand" "Dm")))] "TARGET_NEON" { return neon_output_shift_immediate ("vshr", 'u', &operands[2], mode, VALID_NEON_QREG_MODE (mode), false); } [(set_attr "type" "neon_shift_imm")] ) ; Used for implementing logical shift-right, which is a left-shift by a negative ; amount, with signed operands. This is essentially the same as ashl3 ; above, but using an unspec in case GCC tries anything tricky with negative ; shift amounts. (define_insn "ashl3_signed" [(set (match_operand:VDQI 0 "s_register_operand" "=w") (unspec:VDQI [(match_operand:VDQI 1 "s_register_operand" "w") (match_operand:VDQI 2 "s_register_operand" "w")] UNSPEC_ASHIFT_SIGNED))] "TARGET_NEON" "vshl.\t%0, %1, %2" [(set_attr "type" "neon_shift_reg")] ) ; Used for implementing logical shift-right, which is a left-shift by a negative ; amount, with unsigned operands. (define_insn "ashl3_unsigned" [(set (match_operand:VDQI 0 "s_register_operand" "=w") (unspec:VDQI [(match_operand:VDQI 1 "s_register_operand" "w") (match_operand:VDQI 2 "s_register_operand" "w")] UNSPEC_ASHIFT_UNSIGNED))] "TARGET_NEON" "vshl.\t%0, %1, %2" [(set_attr "type" "neon_shift_reg")] ) (define_expand "vashr3" [(set (match_operand:VDQIW 0 "s_register_operand") (ashiftrt:VDQIW (match_operand:VDQIW 1 "s_register_operand") (match_operand:VDQIW 2 "imm_rshift_or_reg_neon")))] "TARGET_NEON" { if (s_register_operand (operands[2], mode)) { rtx neg = gen_reg_rtx (mode); emit_insn (gen_neg2 (neg, operands[2])); emit_insn (gen_ashl3_signed (operands[0], operands[1], neg)); } else emit_insn (gen_vashr3_imm (operands[0], operands[1], operands[2])); DONE; }) (define_expand "vlshr3" [(set (match_operand:VDQIW 0 "s_register_operand") (lshiftrt:VDQIW (match_operand:VDQIW 1 "s_register_operand") (match_operand:VDQIW 2 "imm_rshift_or_reg_neon")))] "TARGET_NEON" { if (s_register_operand (operands[2], mode)) { rtx neg = gen_reg_rtx (mode); emit_insn (gen_neg2 (neg, operands[2])); emit_insn (gen_ashl3_unsigned (operands[0], operands[1], neg)); } else emit_insn (gen_vlshr3_imm (operands[0], operands[1], operands[2])); DONE; }) ;; 64-bit shifts ;; This pattern loads a 32-bit shift count into a 64-bit NEON register, ;; leaving the upper half uninitalized. This is OK since the shift ;; instruction only looks at the low 8 bits anyway. To avoid confusing ;; data flow analysis however, we pretend the full register is set ;; using an unspec. (define_insn "neon_load_count" [(set (match_operand:DI 0 "s_register_operand" "=w,w") (unspec:DI [(match_operand:SI 1 "nonimmediate_operand" "Um,r")] UNSPEC_LOAD_COUNT))] "TARGET_NEON" "@ vld1.32\t{%P0[0]}, %A1 vmov.32\t%P0[0], %1" [(set_attr "type" "neon_load1_1reg,neon_from_gp")] ) ;; Widening operations (define_expand "widen_ssum3" [(set (match_operand: 0 "s_register_operand") (plus: (sign_extend: (match_operand:VQI 1 "s_register_operand")) (match_operand: 2 "s_register_operand")))] "TARGET_NEON" { machine_mode mode = GET_MODE (operands[1]); rtx p1, p2; p1 = arm_simd_vect_par_cnst_half (mode, false); p2 = arm_simd_vect_par_cnst_half (mode, true); if (operands[0] != operands[2]) emit_move_insn (operands[0], operands[2]); emit_insn (gen_vec_sel_widen_ssum_lo3 (operands[0], operands[1], p1, operands[0])); emit_insn (gen_vec_sel_widen_ssum_hi3 (operands[0], operands[1], p2, operands[0])); DONE; } ) (define_insn "vec_sel_widen_ssum_lo3" [(set (match_operand: 0 "s_register_operand" "=w") (plus: (sign_extend: (vec_select: (match_operand:VQI 1 "s_register_operand" "%w") (match_operand:VQI 2 "vect_par_constant_low" ""))) (match_operand: 3 "s_register_operand" "0")))] "TARGET_NEON" { return BYTES_BIG_ENDIAN ? "vaddw.\t%q0, %q3, %f1" : "vaddw.\t%q0, %q3, %e1"; } [(set_attr "type" "neon_add_widen")]) (define_insn "vec_sel_widen_ssum_hi3" [(set (match_operand: 0 "s_register_operand" "=w") (plus: (sign_extend: (vec_select: (match_operand:VQI 1 "s_register_operand" "%w") (match_operand:VQI 2 "vect_par_constant_high" ""))) (match_operand: 3 "s_register_operand" "0")))] "TARGET_NEON" { return BYTES_BIG_ENDIAN ? "vaddw.\t%q0, %q3, %e1" : "vaddw.\t%q0, %q3, %f1"; } [(set_attr "type" "neon_add_widen")]) (define_insn "widen_ssum3" [(set (match_operand: 0 "s_register_operand" "=w") (plus: (sign_extend: (match_operand:VW 1 "s_register_operand" "%w")) (match_operand: 2 "s_register_operand" "w")))] "TARGET_NEON" "vaddw.\t%q0, %q2, %P1" [(set_attr "type" "neon_add_widen")] ) (define_expand "widen_usum3" [(set (match_operand: 0 "s_register_operand") (plus: (zero_extend: (match_operand:VQI 1 "s_register_operand")) (match_operand: 2 "s_register_operand")))] "TARGET_NEON" { machine_mode mode = GET_MODE (operands[1]); rtx p1, p2; p1 = arm_simd_vect_par_cnst_half (mode, false); p2 = arm_simd_vect_par_cnst_half (mode, true); if (operands[0] != operands[2]) emit_move_insn (operands[0], operands[2]); emit_insn (gen_vec_sel_widen_usum_lo3 (operands[0], operands[1], p1, operands[0])); emit_insn (gen_vec_sel_widen_usum_hi3 (operands[0], operands[1], p2, operands[0])); DONE; } ) (define_insn "vec_sel_widen_usum_lo3" [(set (match_operand: 0 "s_register_operand" "=w") (plus: (zero_extend: (vec_select: (match_operand:VQI 1 "s_register_operand" "%w") (match_operand:VQI 2 "vect_par_constant_low" ""))) (match_operand: 3 "s_register_operand" "0")))] "TARGET_NEON" { return BYTES_BIG_ENDIAN ? "vaddw.\t%q0, %q3, %f1" : "vaddw.\t%q0, %q3, %e1"; } [(set_attr "type" "neon_add_widen")]) (define_insn "vec_sel_widen_usum_hi3" [(set (match_operand: 0 "s_register_operand" "=w") (plus: (zero_extend: (vec_select: (match_operand:VQI 1 "s_register_operand" "%w") (match_operand:VQI 2 "vect_par_constant_high" ""))) (match_operand: 3 "s_register_operand" "0")))] "TARGET_NEON" { return BYTES_BIG_ENDIAN ? "vaddw.\t%q0, %q3, %e1" : "vaddw.\t%q0, %q3, %f1"; } [(set_attr "type" "neon_add_widen")]) (define_insn "widen_usum3" [(set (match_operand: 0 "s_register_operand" "=w") (plus: (zero_extend: (match_operand:VW 1 "s_register_operand" "%w")) (match_operand: 2 "s_register_operand" "w")))] "TARGET_NEON" "vaddw.\t%q0, %q2, %P1" [(set_attr "type" "neon_add_widen")] ) ;; Helpers for quad-word reduction operations ; Add (or smin, smax...) the low N/2 elements of the N-element vector ; operand[1] to the high N/2 elements of same. Put the result in operand[0], an ; N/2-element vector. (define_insn "quad_halves_v4si" [(set (match_operand:V2SI 0 "s_register_operand" "=w") (VQH_OPS:V2SI (vec_select:V2SI (match_operand:V4SI 1 "s_register_operand" "w") (parallel [(const_int 0) (const_int 1)])) (vec_select:V2SI (match_dup 1) (parallel [(const_int 2) (const_int 3)]))))] "TARGET_NEON" ".32\t%P0, %e1, %f1" [(set_attr "vqh_mnem" "") (set_attr "type" "neon_reduc__q")] ) (define_insn "quad_halves_v4sf" [(set (match_operand:V2SF 0 "s_register_operand" "=w") (VQHS_OPS:V2SF (vec_select:V2SF (match_operand:V4SF 1 "s_register_operand" "w") (parallel [(const_int 0) (const_int 1)])) (vec_select:V2SF (match_dup 1) (parallel [(const_int 2) (const_int 3)]))))] "TARGET_NEON && flag_unsafe_math_optimizations" ".f32\t%P0, %e1, %f1" [(set_attr "vqh_mnem" "") (set_attr "type" "neon_fp_reduc__s_q")] ) (define_insn "quad_halves_v8hi" [(set (match_operand:V4HI 0 "s_register_operand" "+w") (VQH_OPS:V4HI (vec_select:V4HI (match_operand:V8HI 1 "s_register_operand" "w") (parallel [(const_int 0) (const_int 1) (const_int 2) (const_int 3)])) (vec_select:V4HI (match_dup 1) (parallel [(const_int 4) (const_int 5) (const_int 6) (const_int 7)]))))] "TARGET_NEON" ".16\t%P0, %e1, %f1" [(set_attr "vqh_mnem" "") (set_attr "type" "neon_reduc__q")] ) (define_insn "quad_halves_v16qi" [(set (match_operand:V8QI 0 "s_register_operand" "+w") (VQH_OPS:V8QI (vec_select:V8QI (match_operand:V16QI 1 "s_register_operand" "w") (parallel [(const_int 0) (const_int 1) (const_int 2) (const_int 3) (const_int 4) (const_int 5) (const_int 6) (const_int 7)])) (vec_select:V8QI (match_dup 1) (parallel [(const_int 8) (const_int 9) (const_int 10) (const_int 11) (const_int 12) (const_int 13) (const_int 14) (const_int 15)]))))] "TARGET_NEON" ".8\t%P0, %e1, %f1" [(set_attr "vqh_mnem" "") (set_attr "type" "neon_reduc__q")] ) (define_expand "move_hi_quad_" [(match_operand:ANY128 0 "s_register_operand") (match_operand: 1 "s_register_operand")] "TARGET_NEON" { emit_move_insn (simplify_gen_subreg (mode, operands[0], mode, GET_MODE_SIZE (mode)), operands[1]); DONE; }) (define_expand "move_lo_quad_" [(match_operand:ANY128 0 "s_register_operand") (match_operand: 1 "s_register_operand")] "TARGET_NEON" { emit_move_insn (simplify_gen_subreg (mode, operands[0], mode, 0), operands[1]); DONE; }) ;; Reduction operations (define_expand "reduc_plus_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VD 1 "s_register_operand")] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" { rtx vec = gen_reg_rtx (mode); neon_pairwise_reduce (vec, operands[1], mode, &gen_neon_vpadd_internal); /* The same result is actually computed into every element. */ emit_insn (gen_vec_extract (operands[0], vec, const0_rtx)); DONE; }) (define_expand "reduc_plus_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VQ 1 "s_register_operand")] "TARGET_NEON && (! || flag_unsafe_math_optimizations) && !BYTES_BIG_ENDIAN" { rtx step1 = gen_reg_rtx (mode); emit_insn (gen_quad_halves_plus (step1, operands[1])); emit_insn (gen_reduc_plus_scal_ (operands[0], step1)); DONE; }) (define_expand "reduc_plus_scal_v2di" [(match_operand:DI 0 "nonimmediate_operand") (match_operand:V2DI 1 "s_register_operand")] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtx vec = gen_reg_rtx (V2DImode); emit_insn (gen_arm_reduc_plus_internal_v2di (vec, operands[1])); emit_insn (gen_vec_extractv2didi (operands[0], vec, const0_rtx)); DONE; }) (define_insn "arm_reduc_plus_internal_v2di" [(set (match_operand:V2DI 0 "s_register_operand" "=w") (unspec:V2DI [(match_operand:V2DI 1 "s_register_operand" "w")] UNSPEC_VPADD))] "TARGET_NEON && !BYTES_BIG_ENDIAN" "vadd.i64\t%e0, %e1, %f1" [(set_attr "type" "neon_add_q")] ) (define_expand "reduc_smin_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VD 1 "s_register_operand")] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" { rtx vec = gen_reg_rtx (mode); neon_pairwise_reduce (vec, operands[1], mode, &gen_neon_vpsmin); /* The result is computed into every element of the vector. */ emit_insn (gen_vec_extract (operands[0], vec, const0_rtx)); DONE; }) (define_expand "reduc_smin_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VQ 1 "s_register_operand")] "TARGET_NEON && (! || flag_unsafe_math_optimizations) && !BYTES_BIG_ENDIAN" { rtx step1 = gen_reg_rtx (mode); emit_insn (gen_quad_halves_smin (step1, operands[1])); emit_insn (gen_reduc_smin_scal_ (operands[0], step1)); DONE; }) (define_expand "reduc_smax_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VD 1 "s_register_operand")] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" { rtx vec = gen_reg_rtx (mode); neon_pairwise_reduce (vec, operands[1], mode, &gen_neon_vpsmax); /* The result is computed into every element of the vector. */ emit_insn (gen_vec_extract (operands[0], vec, const0_rtx)); DONE; }) (define_expand "reduc_smax_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VQ 1 "s_register_operand")] "TARGET_NEON && (! || flag_unsafe_math_optimizations) && !BYTES_BIG_ENDIAN" { rtx step1 = gen_reg_rtx (mode); emit_insn (gen_quad_halves_smax (step1, operands[1])); emit_insn (gen_reduc_smax_scal_ (operands[0], step1)); DONE; }) (define_expand "reduc_umin_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VDI 1 "s_register_operand")] "TARGET_NEON" { rtx vec = gen_reg_rtx (mode); neon_pairwise_reduce (vec, operands[1], mode, &gen_neon_vpumin); /* The result is computed into every element of the vector. */ emit_insn (gen_vec_extract (operands[0], vec, const0_rtx)); DONE; }) (define_expand "reduc_umin_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VQI 1 "s_register_operand")] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtx step1 = gen_reg_rtx (mode); emit_insn (gen_quad_halves_umin (step1, operands[1])); emit_insn (gen_reduc_umin_scal_ (operands[0], step1)); DONE; }) (define_expand "reduc_umax_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VDI 1 "s_register_operand")] "TARGET_NEON" { rtx vec = gen_reg_rtx (mode); neon_pairwise_reduce (vec, operands[1], mode, &gen_neon_vpumax); /* The result is computed into every element of the vector. */ emit_insn (gen_vec_extract (operands[0], vec, const0_rtx)); DONE; }) (define_expand "reduc_umax_scal_" [(match_operand: 0 "nonimmediate_operand") (match_operand:VQI 1 "s_register_operand")] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtx step1 = gen_reg_rtx (mode); emit_insn (gen_quad_halves_umax (step1, operands[1])); emit_insn (gen_reduc_umax_scal_ (operands[0], step1)); DONE; }) (define_insn "neon_vpadd_internal" [(set (match_operand:VD 0 "s_register_operand" "=w") (unspec:VD [(match_operand:VD 1 "s_register_operand" "w") (match_operand:VD 2 "s_register_operand" "w")] UNSPEC_VPADD))] "TARGET_NEON" "vpadd.\t%P0, %P1, %P2" ;; Assume this schedules like vadd. [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_reduc_add_s") (const_string "neon_reduc_add")))] ) (define_insn "neon_vpaddv4hf" [(set (match_operand:V4HF 0 "s_register_operand" "=w") (unspec:V4HF [(match_operand:V4HF 1 "s_register_operand" "w") (match_operand:V4HF 2 "s_register_operand" "w")] UNSPEC_VPADD))] "TARGET_NEON_FP16INST" "vpadd.f16\t%P0, %P1, %P2" [(set_attr "type" "neon_reduc_add")] ) (define_insn "neon_vpsmin" [(set (match_operand:VD 0 "s_register_operand" "=w") (unspec:VD [(match_operand:VD 1 "s_register_operand" "w") (match_operand:VD 2 "s_register_operand" "w")] UNSPEC_VPSMIN))] "TARGET_NEON" "vpmin.\t%P0, %P1, %P2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_reduc_minmax_s") (const_string "neon_reduc_minmax")))] ) (define_insn "neon_vpsmax" [(set (match_operand:VD 0 "s_register_operand" "=w") (unspec:VD [(match_operand:VD 1 "s_register_operand" "w") (match_operand:VD 2 "s_register_operand" "w")] UNSPEC_VPSMAX))] "TARGET_NEON" "vpmax.\t%P0, %P1, %P2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_reduc_minmax_s") (const_string "neon_reduc_minmax")))] ) (define_insn "neon_vpumin" [(set (match_operand:VDI 0 "s_register_operand" "=w") (unspec:VDI [(match_operand:VDI 1 "s_register_operand" "w") (match_operand:VDI 2 "s_register_operand" "w")] UNSPEC_VPUMIN))] "TARGET_NEON" "vpmin.\t%P0, %P1, %P2" [(set_attr "type" "neon_reduc_minmax")] ) (define_insn "neon_vpumax" [(set (match_operand:VDI 0 "s_register_operand" "=w") (unspec:VDI [(match_operand:VDI 1 "s_register_operand" "w") (match_operand:VDI 2 "s_register_operand" "w")] UNSPEC_VPUMAX))] "TARGET_NEON" "vpmax.\t%P0, %P1, %P2" [(set_attr "type" "neon_reduc_minmax")] ) ;; Saturating arithmetic ; NOTE: Neon supports many more saturating variants of instructions than the ; following, but these are all GCC currently understands. ; FIXME: Actually, GCC doesn't know how to create saturating add/sub by itself ; yet either, although these patterns may be used by intrinsics when they're ; added. (define_insn "*ss_add_neon" [(set (match_operand:VD 0 "s_register_operand" "=w") (ss_plus:VD (match_operand:VD 1 "s_register_operand" "w") (match_operand:VD 2 "s_register_operand" "w")))] "TARGET_NEON" "vqadd.\t%P0, %P1, %P2" [(set_attr "type" "neon_qadd")] ) (define_insn "*us_add_neon" [(set (match_operand:VD 0 "s_register_operand" "=w") (us_plus:VD (match_operand:VD 1 "s_register_operand" "w") (match_operand:VD 2 "s_register_operand" "w")))] "TARGET_NEON" "vqadd.\t%P0, %P1, %P2" [(set_attr "type" "neon_qadd")] ) (define_insn "*ss_sub_neon" [(set (match_operand:VD 0 "s_register_operand" "=w") (ss_minus:VD (match_operand:VD 1 "s_register_operand" "w") (match_operand:VD 2 "s_register_operand" "w")))] "TARGET_NEON" "vqsub.\t%P0, %P1, %P2" [(set_attr "type" "neon_qsub")] ) (define_insn "*us_sub_neon" [(set (match_operand:VD 0 "s_register_operand" "=w") (us_minus:VD (match_operand:VD 1 "s_register_operand" "w") (match_operand:VD 2 "s_register_operand" "w")))] "TARGET_NEON" "vqsub.\t%P0, %P1, %P2" [(set_attr "type" "neon_qsub")] ) ;; Conditional instructions. These are comparisons with conditional moves for ;; vectors. They perform the assignment: ;; ;; Vop0 = (Vop4 Vop5) ? Vop1 : Vop2; ;; ;; where op3 is <, <=, ==, !=, >= or >. Operations are performed ;; element-wise. (define_expand "vcond" [(set (match_operand:VDQW 0 "s_register_operand") (if_then_else:VDQW (match_operator 3 "comparison_operator" [(match_operand:VDQW 4 "s_register_operand") (match_operand:VDQW 5 "nonmemory_operand")]) (match_operand:VDQW 1 "s_register_operand") (match_operand:VDQW 2 "s_register_operand")))] "TARGET_NEON && (! || flag_unsafe_math_optimizations)" { int inverse = 0; int use_zero_form = 0; int swap_bsl_operands = 0; rtx mask = gen_reg_rtx (mode); rtx tmp = gen_reg_rtx (mode); rtx (*base_comparison) (rtx, rtx, rtx); rtx (*complimentary_comparison) (rtx, rtx, rtx); switch (GET_CODE (operands[3])) { case GE: case GT: case LE: case LT: case EQ: if (operands[5] == CONST0_RTX (mode)) { use_zero_form = 1; break; } /* Fall through. */ default: if (!REG_P (operands[5])) operands[5] = force_reg (mode, operands[5]); } switch (GET_CODE (operands[3])) { case LT: case UNLT: inverse = 1; /* Fall through. */ case GE: case UNGE: case ORDERED: case UNORDERED: base_comparison = gen_neon_vcge; complimentary_comparison = gen_neon_vcgt; break; case LE: case UNLE: inverse = 1; /* Fall through. */ case GT: case UNGT: base_comparison = gen_neon_vcgt; complimentary_comparison = gen_neon_vcge; break; case EQ: case NE: case UNEQ: base_comparison = gen_neon_vceq; complimentary_comparison = gen_neon_vceq; break; default: gcc_unreachable (); } switch (GET_CODE (operands[3])) { case LT: case LE: case GT: case GE: case EQ: /* The easy case. Here we emit one of vcge, vcgt or vceq. As a LT b <=> b GE a && a LE b <=> b GT a. Our transformations are: a GE b -> a GE b a GT b -> a GT b a LE b -> b GE a a LT b -> b GT a a EQ b -> a EQ b Note that there also exist direct comparison against 0 forms, so catch those as a special case. */ if (use_zero_form) { inverse = 0; switch (GET_CODE (operands[3])) { case LT: base_comparison = gen_neon_vclt; break; case LE: base_comparison = gen_neon_vcle; break; default: /* Do nothing, other zero form cases already have the correct base_comparison. */ break; } } if (!inverse) emit_insn (base_comparison (mask, operands[4], operands[5])); else emit_insn (complimentary_comparison (mask, operands[5], operands[4])); break; case UNLT: case UNLE: case UNGT: case UNGE: case NE: /* Vector compare returns false for lanes which are unordered, so if we use the inverse of the comparison we actually want to emit, then swap the operands to BSL, we will end up with the correct result. Note that a NE NaN and NaN NE b are true for all a, b. Our transformations are: a GE b -> !(b GT a) a GT b -> !(b GE a) a LE b -> !(a GT b) a LT b -> !(a GE b) a NE b -> !(a EQ b) */ if (inverse) emit_insn (base_comparison (mask, operands[4], operands[5])); else emit_insn (complimentary_comparison (mask, operands[5], operands[4])); swap_bsl_operands = 1; break; case UNEQ: /* We check (a > b || b > a). combining these comparisons give us true iff !(a != b && a ORDERED b), swapping the operands to BSL will then give us (a == b || a UNORDERED b) as intended. */ emit_insn (gen_neon_vcgt (mask, operands[4], operands[5])); emit_insn (gen_neon_vcgt (tmp, operands[5], operands[4])); emit_insn (gen_ior3 (mask, mask, tmp)); swap_bsl_operands = 1; break; case UNORDERED: /* Operands are ORDERED iff (a > b || b >= a). Swapping the operands to BSL will give the UNORDERED case. */ swap_bsl_operands = 1; /* Fall through. */ case ORDERED: emit_insn (gen_neon_vcgt (tmp, operands[4], operands[5])); emit_insn (gen_neon_vcge (mask, operands[5], operands[4])); emit_insn (gen_ior3 (mask, mask, tmp)); break; default: gcc_unreachable (); } if (swap_bsl_operands) emit_insn (gen_neon_vbsl (operands[0], mask, operands[2], operands[1])); else emit_insn (gen_neon_vbsl (operands[0], mask, operands[1], operands[2])); DONE; }) (define_expand "vcondu" [(set (match_operand:VDQIW 0 "s_register_operand") (if_then_else:VDQIW (match_operator 3 "arm_comparison_operator" [(match_operand:VDQIW 4 "s_register_operand") (match_operand:VDQIW 5 "s_register_operand")]) (match_operand:VDQIW 1 "s_register_operand") (match_operand:VDQIW 2 "s_register_operand")))] "TARGET_NEON" { rtx mask; int inverse = 0, immediate_zero = 0; mask = gen_reg_rtx (mode); if (operands[5] == CONST0_RTX (mode)) immediate_zero = 1; else if (!REG_P (operands[5])) operands[5] = force_reg (mode, operands[5]); switch (GET_CODE (operands[3])) { case GEU: emit_insn (gen_neon_vcgeu (mask, operands[4], operands[5])); break; case GTU: emit_insn (gen_neon_vcgtu (mask, operands[4], operands[5])); break; case EQ: emit_insn (gen_neon_vceq (mask, operands[4], operands[5])); break; case LEU: if (immediate_zero) emit_insn (gen_neon_vcle (mask, operands[4], operands[5])); else emit_insn (gen_neon_vcgeu (mask, operands[5], operands[4])); break; case LTU: if (immediate_zero) emit_insn (gen_neon_vclt (mask, operands[4], operands[5])); else emit_insn (gen_neon_vcgtu (mask, operands[5], operands[4])); break; case NE: emit_insn (gen_neon_vceq (mask, operands[4], operands[5])); inverse = 1; break; default: gcc_unreachable (); } if (inverse) emit_insn (gen_neon_vbsl (operands[0], mask, operands[2], operands[1])); else emit_insn (gen_neon_vbsl (operands[0], mask, operands[1], operands[2])); DONE; }) ;; Patterns for builtins. ; good for plain vadd, vaddq. (define_expand "neon_vadd" [(match_operand:VCVTF 0 "s_register_operand") (match_operand:VCVTF 1 "s_register_operand") (match_operand:VCVTF 2 "s_register_operand")] "TARGET_NEON" { if (! || flag_unsafe_math_optimizations) emit_insn (gen_add3 (operands[0], operands[1], operands[2])); else emit_insn (gen_neon_vadd_unspec (operands[0], operands[1], operands[2])); DONE; }) (define_expand "neon_vadd" [(match_operand:VH 0 "s_register_operand") (match_operand:VH 1 "s_register_operand") (match_operand:VH 2 "s_register_operand")] "TARGET_NEON_FP16INST" { emit_insn (gen_add3_fp16 (operands[0], operands[1], operands[2])); DONE; }) (define_expand "neon_vsub" [(match_operand:VH 0 "s_register_operand") (match_operand:VH 1 "s_register_operand") (match_operand:VH 2 "s_register_operand")] "TARGET_NEON_FP16INST" { emit_insn (gen_sub3_fp16 (operands[0], operands[1], operands[2])); DONE; }) ; Note that NEON operations don't support the full IEEE 754 standard: in ; particular, denormal values are flushed to zero. This means that GCC cannot ; use those instructions for autovectorization, etc. unless ; -funsafe-math-optimizations is in effect (in which case flush-to-zero ; behavior is permissible). Intrinsic operations (provided by the arm_neon.h ; header) must work in either case: if -funsafe-math-optimizations is given, ; intrinsics expand to "canonical" RTL where possible, otherwise intrinsics ; expand to unspecs (which may potentially limit the extent to which they might ; be optimized by generic code). ; Used for intrinsics when flag_unsafe_math_optimizations is false. (define_insn "neon_vadd_unspec" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] UNSPEC_VADD))] "TARGET_NEON" "vadd.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_addsub_s") (const_string "neon_add")))] ) (define_insn "neon_vaddl" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VDI 1 "s_register_operand" "w") (match_operand:VDI 2 "s_register_operand" "w")] VADDL))] "TARGET_NEON" "vaddl.%#\t%q0, %P1, %P2" [(set_attr "type" "neon_add_long")] ) (define_insn "neon_vaddw" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "w") (match_operand:VDI 2 "s_register_operand" "w")] VADDW))] "TARGET_NEON" "vaddw.%#\t%q0, %q1, %P2" [(set_attr "type" "neon_add_widen")] ) ; vhadd and vrhadd. (define_insn "neon_vhadd" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w")] VHADD))] "TARGET_NEON" "vhadd.%#\t%0, %1, %2" [(set_attr "type" "neon_add_halve_q")] ) (define_insn "neon_vqadd" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:VDQIX 2 "s_register_operand" "w")] VQADD))] "TARGET_NEON" "vqadd.%#\t%0, %1, %2" [(set_attr "type" "neon_qadd")] ) (define_insn "neon_vaddhn" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w") (match_operand:VN 2 "s_register_operand" "w")] VADDHN))] "TARGET_NEON" "vaddhn.\t%P0, %q1, %q2" [(set_attr "type" "neon_add_halve_narrow_q")] ) ;; Polynomial and Float multiplication. (define_insn "neon_vmul" [(set (match_operand:VPF 0 "s_register_operand" "=w") (unspec:VPF [(match_operand:VPF 1 "s_register_operand" "w") (match_operand:VPF 2 "s_register_operand" "w")] UNSPEC_VMUL))] "TARGET_NEON" "vmul.%#\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mul_s") (const_string "neon_mul_")))] ) (define_insn "mul3" [(set (match_operand:VH 0 "s_register_operand" "=w") (mult:VH (match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")))] "TARGET_NEON_FP16INST && flag_unsafe_math_optimizations" "vmul.f16\t%0, %1, %2" [(set_attr "type" "neon_mul_")] ) (define_insn "neon_vmulf" [(set (match_operand:VH 0 "s_register_operand" "=w") (mult:VH (match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")))] "TARGET_NEON_FP16INST" "vmul.f16\t%0, %1, %2" [(set_attr "type" "neon_mul_")] ) (define_expand "neon_vmla" [(match_operand:VDQW 0 "s_register_operand") (match_operand:VDQW 1 "s_register_operand") (match_operand:VDQW 2 "s_register_operand") (match_operand:VDQW 3 "s_register_operand")] "TARGET_NEON" { if (! || flag_unsafe_math_optimizations) emit_insn (gen_mul3add_neon (operands[0], operands[1], operands[2], operands[3])); else emit_insn (gen_neon_vmla_unspec (operands[0], operands[1], operands[2], operands[3])); DONE; }) (define_expand "neon_vfma" [(match_operand:VCVTF 0 "s_register_operand") (match_operand:VCVTF 1 "s_register_operand") (match_operand:VCVTF 2 "s_register_operand") (match_operand:VCVTF 3 "s_register_operand")] "TARGET_NEON && TARGET_FMA" { emit_insn (gen_fma4_intrinsic (operands[0], operands[2], operands[3], operands[1])); DONE; }) (define_expand "neon_vfma" [(match_operand:VH 0 "s_register_operand") (match_operand:VH 1 "s_register_operand") (match_operand:VH 2 "s_register_operand") (match_operand:VH 3 "s_register_operand")] "TARGET_NEON_FP16INST" { emit_insn (gen_fma4_intrinsic (operands[0], operands[2], operands[3], operands[1])); DONE; }) (define_expand "neon_vfms" [(match_operand:VCVTF 0 "s_register_operand") (match_operand:VCVTF 1 "s_register_operand") (match_operand:VCVTF 2 "s_register_operand") (match_operand:VCVTF 3 "s_register_operand")] "TARGET_NEON && TARGET_FMA" { emit_insn (gen_fmsub4_intrinsic (operands[0], operands[2], operands[3], operands[1])); DONE; }) (define_expand "neon_vfms" [(match_operand:VH 0 "s_register_operand") (match_operand:VH 1 "s_register_operand") (match_operand:VH 2 "s_register_operand") (match_operand:VH 3 "s_register_operand")] "TARGET_NEON_FP16INST" { emit_insn (gen_fmsub4_intrinsic (operands[0], operands[2], operands[3], operands[1])); DONE; }) ;; The expand RTL structure here is not important. ;; We use the gen_* functions anyway. ;; We just need something to wrap the iterators around. (define_expand "neon_vfml_" [(set (match_operand:VCVTF 0 "s_register_operand") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand") (PLUSMINUS: (match_operand: 2 "s_register_operand") (match_operand: 3 "s_register_operand"))] VFMLHALVES))] "TARGET_FP16FML" { rtx half = arm_simd_vect_par_cnst_half (mode, ); emit_insn (gen_vfml__intrinsic (operands[0], operands[1], operands[2], operands[3], half, half)); DONE; }) (define_insn "vfmal_low_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_low" ""))) (float_extend:VCVTF (vec_select: (match_operand: 3 "s_register_operand" "") (match_operand: 5 "vect_par_constant_low" ""))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" "vfmal.f16\\t%0, %2, %3" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "vfmsl_high_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (neg: (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_high" "")))) (float_extend:VCVTF (vec_select: (match_operand: 3 "s_register_operand" "") (match_operand: 5 "vect_par_constant_high" ""))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" "vfmsl.f16\\t%0, %2, %3" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "vfmal_high_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_high" ""))) (float_extend:VCVTF (vec_select: (match_operand: 3 "s_register_operand" "") (match_operand: 5 "vect_par_constant_high" ""))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" "vfmal.f16\\t%0, %2, %3" [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "vfmsl_low_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (neg: (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_low" "")))) (float_extend:VCVTF (vec_select: (match_operand: 3 "s_register_operand" "") (match_operand: 5 "vect_par_constant_low" ""))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" "vfmsl.f16\\t%0, %2, %3" [(set_attr "type" "neon_fp_mla_s")] ) (define_expand "neon_vfml_lane_" [(set:VCVTF (match_operand:VCVTF 0 "s_register_operand") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand") (PLUSMINUS: (match_operand: 2 "s_register_operand") (match_operand: 3 "s_register_operand")) (match_operand:SI 4 "const_int_operand")] VFMLHALVES))] "TARGET_FP16FML" { rtx lane = GEN_INT (NEON_ENDIAN_LANE_N (mode, INTVAL (operands[4]))); rtx half = arm_simd_vect_par_cnst_half (mode, ); emit_insn (gen_vfml_lane__intrinsic (operands[0], operands[1], operands[2], operands[3], half, lane)); DONE; }) (define_insn "vfmal_lane_low_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_low" ""))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); if (lane > GET_MODE_NUNITS (mode) - 1) { operands[5] = GEN_INT (lane - GET_MODE_NUNITS (mode)); return "vfmal.f16\\t%0, %2, %3[%c5]"; } else { operands[5] = GEN_INT (lane); return "vfmal.f16\\t%0, %2, %3[%c5]"; } } [(set_attr "type" "neon_fp_mla_s")] ) (define_expand "neon_vfml_lane_" [(set:VCVTF (match_operand:VCVTF 0 "s_register_operand") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand") (PLUSMINUS: (match_operand: 2 "s_register_operand") (match_operand: 3 "s_register_operand")) (match_operand:SI 4 "const_int_operand")] VFMLHALVES))] "TARGET_FP16FML" { rtx lane = GEN_INT (NEON_ENDIAN_LANE_N (mode, INTVAL (operands[4]))); rtx half = arm_simd_vect_par_cnst_half (mode, ); emit_insn (gen_vfml_lane__intrinsic (operands[0], operands[1], operands[2], operands[3], half, lane)); DONE; }) ;; Used to implement the intrinsics: ;; float32x4_t vfmlalq_lane_low_f16 (float32x4_t r, float16x8_t a, float16x4_t b, const int lane) ;; float32x2_t vfmlal_laneq_low_f16 (float32x2_t r, float16x4_t a, float16x8_t b, const int lane) ;; Needs a bit of care to get the modes of the different sub-expressions right ;; due to 'a' and 'b' having different sizes and make sure we use the right ;; S or D subregister to select the appropriate lane from. (define_insn "vfmal_lane_low_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_low" ""))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); int elts_per_reg = GET_MODE_NUNITS (mode); int new_lane = lane % elts_per_reg; int regdiff = lane / elts_per_reg; operands[5] = GEN_INT (new_lane); /* We re-create operands[2] and operands[3] in the halved VFMLSEL modes because we want the print_operand code to print the appropriate S or D register prefix. */ operands[3] = gen_rtx_REG (mode, REGNO (operands[3]) + regdiff); operands[2] = gen_rtx_REG (mode, REGNO (operands[2])); return "vfmal.f16\\t%0, %2, %3[%c5]"; } [(set_attr "type" "neon_fp_mla_s")] ) ;; Used to implement the intrinsics: ;; float32x4_t vfmlalq_lane_high_f16 (float32x4_t r, float16x8_t a, float16x4_t b, const int lane) ;; float32x2_t vfmlal_laneq_high_f16 (float32x2_t r, float16x4_t a, float16x8_t b, const int lane) ;; Needs a bit of care to get the modes of the different sub-expressions right ;; due to 'a' and 'b' having different sizes and make sure we use the right ;; S or D subregister to select the appropriate lane from. (define_insn "vfmal_lane_high_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_high" ""))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); int elts_per_reg = GET_MODE_NUNITS (mode); int new_lane = lane % elts_per_reg; int regdiff = lane / elts_per_reg; operands[5] = GEN_INT (new_lane); /* We re-create operands[3] in the halved VFMLSEL mode because we've calculated the correct half-width subreg to extract the lane from and we want to print *that* subreg instead. */ operands[3] = gen_rtx_REG (mode, REGNO (operands[3]) + regdiff); return "vfmal.f16\\t%0, %2, %3[%c5]"; } [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "vfmal_lane_high_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_high" ""))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); if (lane > GET_MODE_NUNITS (mode) - 1) { operands[5] = GEN_INT (lane - GET_MODE_NUNITS (mode)); return "vfmal.f16\\t%0, %2, %3[%c5]"; } else { operands[5] = GEN_INT (lane); return "vfmal.f16\\t%0, %2, %3[%c5]"; } } [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "vfmsl_lane_low_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (neg: (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_low" "")))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); if (lane > GET_MODE_NUNITS (mode) - 1) { operands[5] = GEN_INT (lane - GET_MODE_NUNITS (mode)); return "vfmsl.f16\\t%0, %2, %3[%c5]"; } else { operands[5] = GEN_INT (lane); return "vfmsl.f16\\t%0, %2, %3[%c5]"; } } [(set_attr "type" "neon_fp_mla_s")] ) ;; Used to implement the intrinsics: ;; float32x4_t vfmlslq_lane_low_f16 (float32x4_t r, float16x8_t a, float16x4_t b, const int lane) ;; float32x2_t vfmlsl_laneq_low_f16 (float32x2_t r, float16x4_t a, float16x8_t b, const int lane) ;; Needs a bit of care to get the modes of the different sub-expressions right ;; due to 'a' and 'b' having different sizes and make sure we use the right ;; S or D subregister to select the appropriate lane from. (define_insn "vfmsl_lane_low_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (neg: (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_low" "")))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); int elts_per_reg = GET_MODE_NUNITS (mode); int new_lane = lane % elts_per_reg; int regdiff = lane / elts_per_reg; operands[5] = GEN_INT (new_lane); /* We re-create operands[2] and operands[3] in the halved VFMLSEL modes because we want the print_operand code to print the appropriate S or D register prefix. */ operands[3] = gen_rtx_REG (mode, REGNO (operands[3]) + regdiff); operands[2] = gen_rtx_REG (mode, REGNO (operands[2])); return "vfmsl.f16\\t%0, %2, %3[%c5]"; } [(set_attr "type" "neon_fp_mla_s")] ) ;; Used to implement the intrinsics: ;; float32x4_t vfmlslq_lane_high_f16 (float32x4_t r, float16x8_t a, float16x4_t b, const int lane) ;; float32x2_t vfmlsl_laneq_high_f16 (float32x2_t r, float16x4_t a, float16x8_t b, const int lane) ;; Needs a bit of care to get the modes of the different sub-expressions right ;; due to 'a' and 'b' having different sizes and make sure we use the right ;; S or D subregister to select the appropriate lane from. (define_insn "vfmsl_lane_high_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (neg: (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_high" "")))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); int elts_per_reg = GET_MODE_NUNITS (mode); int new_lane = lane % elts_per_reg; int regdiff = lane / elts_per_reg; operands[5] = GEN_INT (new_lane); /* We re-create operands[3] in the halved VFMLSEL mode because we've calculated the correct half-width subreg to extract the lane from and we want to print *that* subreg instead. */ operands[3] = gen_rtx_REG (mode, REGNO (operands[3]) + regdiff); return "vfmsl.f16\\t%0, %2, %3[%c5]"; } [(set_attr "type" "neon_fp_mla_s")] ) (define_insn "vfmsl_lane_high_intrinsic" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (fma:VCVTF (float_extend:VCVTF (neg: (vec_select: (match_operand: 2 "s_register_operand" "") (match_operand: 4 "vect_par_constant_high" "")))) (float_extend:VCVTF (vec_duplicate: (vec_select:HF (match_operand: 3 "s_register_operand" "x") (parallel [(match_operand:SI 5 "const_int_operand" "n")])))) (match_operand:VCVTF 1 "s_register_operand" "0")))] "TARGET_FP16FML" { int lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[5])); if (lane > GET_MODE_NUNITS (mode) - 1) { operands[5] = GEN_INT (lane - GET_MODE_NUNITS (mode)); return "vfmsl.f16\\t%0, %2, %3[%c5]"; } else { operands[5] = GEN_INT (lane); return "vfmsl.f16\\t%0, %2, %3[%c5]"; } } [(set_attr "type" "neon_fp_mla_s")] ) ; Used for intrinsics when flag_unsafe_math_optimizations is false. (define_insn "neon_vmla_unspec" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (unspec:VDQW [(match_operand:VDQW 1 "s_register_operand" "0") (match_operand:VDQW 2 "s_register_operand" "w") (match_operand:VDQW 3 "s_register_operand" "w")] UNSPEC_VMLA))] "TARGET_NEON" "vmla.\t%0, %2, %3" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s") (const_string "neon_mla_")))] ) (define_insn "neon_vmlal" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VW 2 "s_register_operand" "w") (match_operand:VW 3 "s_register_operand" "w")] VMLAL))] "TARGET_NEON" "vmlal.%#\t%q0, %P2, %P3" [(set_attr "type" "neon_mla__long")] ) (define_expand "neon_vmls" [(match_operand:VDQW 0 "s_register_operand") (match_operand:VDQW 1 "s_register_operand") (match_operand:VDQW 2 "s_register_operand") (match_operand:VDQW 3 "s_register_operand")] "TARGET_NEON" { if (! || flag_unsafe_math_optimizations) emit_insn (gen_mul3negadd_neon (operands[0], operands[1], operands[2], operands[3])); else emit_insn (gen_neon_vmls_unspec (operands[0], operands[1], operands[2], operands[3])); DONE; }) ; Used for intrinsics when flag_unsafe_math_optimizations is false. (define_insn "neon_vmls_unspec" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (unspec:VDQW [(match_operand:VDQW 1 "s_register_operand" "0") (match_operand:VDQW 2 "s_register_operand" "w") (match_operand:VDQW 3 "s_register_operand" "w")] UNSPEC_VMLS))] "TARGET_NEON" "vmls.\t%0, %2, %3" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s") (const_string "neon_mla_")))] ) (define_insn "neon_vmlsl" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VW 2 "s_register_operand" "w") (match_operand:VW 3 "s_register_operand" "w")] VMLSL))] "TARGET_NEON" "vmlsl.%#\t%q0, %P2, %P3" [(set_attr "type" "neon_mla__long")] ) ;; vqdmulh, vqrdmulh (define_insn "neon_vqdmulh" [(set (match_operand:VMDQI 0 "s_register_operand" "=w") (unspec:VMDQI [(match_operand:VMDQI 1 "s_register_operand" "w") (match_operand:VMDQI 2 "s_register_operand" "w")] VQDMULH))] "TARGET_NEON" "vqdmulh.\t%0, %1, %2" [(set_attr "type" "neon_sat_mul_")] ) ;; vqrdmlah, vqrdmlsh (define_insn "neon_vqrdmlh" [(set (match_operand:VMDQI 0 "s_register_operand" "=w") (unspec:VMDQI [(match_operand:VMDQI 1 "s_register_operand" "0") (match_operand:VMDQI 2 "s_register_operand" "w") (match_operand:VMDQI 3 "s_register_operand" "w")] VQRDMLH_AS))] "TARGET_NEON_RDMA" "vqrdmlh.\t%0, %2, %3" [(set_attr "type" "neon_sat_mla__long")] ) (define_insn "neon_vqdmlal" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VMDI 2 "s_register_operand" "w") (match_operand:VMDI 3 "s_register_operand" "w")] UNSPEC_VQDMLAL))] "TARGET_NEON" "vqdmlal.\t%q0, %P2, %P3" [(set_attr "type" "neon_sat_mla__long")] ) (define_insn "neon_vqdmlsl" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VMDI 2 "s_register_operand" "w") (match_operand:VMDI 3 "s_register_operand" "w")] UNSPEC_VQDMLSL))] "TARGET_NEON" "vqdmlsl.\t%q0, %P2, %P3" [(set_attr "type" "neon_sat_mla__long")] ) (define_insn "neon_vmull" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VW 1 "s_register_operand" "w") (match_operand:VW 2 "s_register_operand" "w")] VMULL))] "TARGET_NEON" "vmull.%#\t%q0, %P1, %P2" [(set_attr "type" "neon_mul__long")] ) (define_insn "neon_vqdmull" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VMDI 1 "s_register_operand" "w") (match_operand:VMDI 2 "s_register_operand" "w")] UNSPEC_VQDMULL))] "TARGET_NEON" "vqdmull.\t%q0, %P1, %P2" [(set_attr "type" "neon_sat_mul__long")] ) (define_expand "neon_vsub" [(match_operand:VCVTF 0 "s_register_operand") (match_operand:VCVTF 1 "s_register_operand") (match_operand:VCVTF 2 "s_register_operand")] "TARGET_NEON" { if (! || flag_unsafe_math_optimizations) emit_insn (gen_sub3 (operands[0], operands[1], operands[2])); else emit_insn (gen_neon_vsub_unspec (operands[0], operands[1], operands[2])); DONE; }) ; Used for intrinsics when flag_unsafe_math_optimizations is false. (define_insn "neon_vsub_unspec" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] UNSPEC_VSUB))] "TARGET_NEON" "vsub.\t%0, %1, %2" [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_addsub_s") (const_string "neon_sub")))] ) (define_insn "neon_vsubl" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VDI 1 "s_register_operand" "w") (match_operand:VDI 2 "s_register_operand" "w")] VSUBL))] "TARGET_NEON" "vsubl.%#\t%q0, %P1, %P2" [(set_attr "type" "neon_sub_long")] ) (define_insn "neon_vsubw" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "w") (match_operand:VDI 2 "s_register_operand" "w")] VSUBW))] "TARGET_NEON" "vsubw.%#\t%q0, %q1, %P2" [(set_attr "type" "neon_sub_widen")] ) (define_insn "neon_vqsub" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:VDQIX 2 "s_register_operand" "w")] VQSUB))] "TARGET_NEON" "vqsub.%#\t%0, %1, %2" [(set_attr "type" "neon_qsub")] ) (define_insn "neon_vhsub" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w")] VHSUB))] "TARGET_NEON" "vhsub.%#\t%0, %1, %2" [(set_attr "type" "neon_sub_halve")] ) (define_insn "neon_vsubhn" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w") (match_operand:VN 2 "s_register_operand" "w")] VSUBHN))] "TARGET_NEON" "vsubhn.\t%P0, %q1, %q2" [(set_attr "type" "neon_sub_halve_narrow_q")] ) ;; These may expand to an UNSPEC pattern when a floating point mode is used ;; without unsafe math optimizations. (define_expand "neon_vc" [(match_operand: 0 "s_register_operand") (neg: (COMPARISONS:VDQW (match_operand:VDQW 1 "s_register_operand") (match_operand:VDQW 2 "reg_or_zero_operand")))] "TARGET_NEON" { /* For FP comparisons use UNSPECS unless -funsafe-math-optimizations are enabled. */ if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT && !flag_unsafe_math_optimizations) { /* We don't just emit a gen_neon_vc_insn_unspec because we define gen_neon_vceq_insn_unspec only for float modes whereas this expander iterates over the integer modes as well, but we will never expand to UNSPECs for the integer comparisons. */ switch (mode) { case E_V2SFmode: emit_insn (gen_neon_vcv2sf_insn_unspec (operands[0], operands[1], operands[2])); break; case E_V4SFmode: emit_insn (gen_neon_vcv4sf_insn_unspec (operands[0], operands[1], operands[2])); break; default: gcc_unreachable (); } } else emit_insn (gen_neon_vc_insn (operands[0], operands[1], operands[2])); DONE; } ) (define_insn "neon_vc_insn" [(set (match_operand: 0 "s_register_operand" "=w,w") (neg: (COMPARISONS: (match_operand:VDQW 1 "s_register_operand" "w,w") (match_operand:VDQW 2 "reg_or_zero_operand" "w,Dz"))))] "TARGET_NEON && !(GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT && !flag_unsafe_math_optimizations)" { char pattern[100]; sprintf (pattern, "vc.%s%%#\t%%0," " %%1, %s", GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT ? "f" : "", which_alternative == 0 ? "%2" : "#0"); output_asm_insn (pattern, operands); return ""; } [(set (attr "type") (if_then_else (match_operand 2 "zero_operand") (const_string "neon_compare_zero") (const_string "neon_compare")))] ) (define_insn "neon_vc_insn_unspec" [(set (match_operand: 0 "s_register_operand" "=w,w") (unspec: [(match_operand:VCVTF 1 "s_register_operand" "w,w") (match_operand:VCVTF 2 "reg_or_zero_operand" "w,Dz")] NEON_VCMP))] "TARGET_NEON" { char pattern[100]; sprintf (pattern, "vc.f%%#\t%%0," " %%1, %s", which_alternative == 0 ? "%2" : "#0"); output_asm_insn (pattern, operands); return ""; } [(set_attr "type" "neon_fp_compare_s")] ) (define_expand "neon_vc" [(match_operand: 0 "s_register_operand") (neg: (COMPARISONS:VH (match_operand:VH 1 "s_register_operand") (match_operand:VH 2 "reg_or_zero_operand")))] "TARGET_NEON_FP16INST" { /* For FP comparisons use UNSPECS unless -funsafe-math-optimizations are enabled. */ if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT && !flag_unsafe_math_optimizations) emit_insn (gen_neon_vc_fp16insn_unspec (operands[0], operands[1], operands[2])); else emit_insn (gen_neon_vc_fp16insn (operands[0], operands[1], operands[2])); DONE; }) (define_insn "neon_vc_fp16insn" [(set (match_operand: 0 "s_register_operand" "=w,w") (neg: (COMPARISONS: (match_operand:VH 1 "s_register_operand" "w,w") (match_operand:VH 2 "reg_or_zero_operand" "w,Dz"))))] "TARGET_NEON_FP16INST && !(GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT && !flag_unsafe_math_optimizations)" { char pattern[100]; sprintf (pattern, "vc.%s%%#\t%%0," " %%1, %s", GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT ? "f" : "", which_alternative == 0 ? "%2" : "#0"); output_asm_insn (pattern, operands); return ""; } [(set (attr "type") (if_then_else (match_operand 2 "zero_operand") (const_string "neon_compare_zero") (const_string "neon_compare")))]) (define_insn "neon_vc_fp16insn_unspec" [(set (match_operand: 0 "s_register_operand" "=w,w") (unspec: [(match_operand:VH 1 "s_register_operand" "w,w") (match_operand:VH 2 "reg_or_zero_operand" "w,Dz")] NEON_VCMP))] "TARGET_NEON_FP16INST" { char pattern[100]; sprintf (pattern, "vc.f%%#\t%%0," " %%1, %s", which_alternative == 0 ? "%2" : "#0"); output_asm_insn (pattern, operands); return ""; } [(set_attr "type" "neon_fp_compare_s")]) (define_insn "neon_vcu" [(set (match_operand: 0 "s_register_operand" "=w") (neg: (GTUGEU: (match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w"))))] "TARGET_NEON" "vc.u%#\t%0, %1, %2" [(set_attr "type" "neon_compare")] ) (define_expand "neon_vca" [(set (match_operand: 0 "s_register_operand") (neg: (GTGE: (abs:VCVTF (match_operand:VCVTF 1 "s_register_operand")) (abs:VCVTF (match_operand:VCVTF 2 "s_register_operand")))))] "TARGET_NEON" { if (flag_unsafe_math_optimizations) emit_insn (gen_neon_vca_insn (operands[0], operands[1], operands[2])); else emit_insn (gen_neon_vca_insn_unspec (operands[0], operands[1], operands[2])); DONE; } ) (define_insn "neon_vca_insn" [(set (match_operand: 0 "s_register_operand" "=w") (neg: (GTGE: (abs:VCVTF (match_operand:VCVTF 1 "s_register_operand" "w")) (abs:VCVTF (match_operand:VCVTF 2 "s_register_operand" "w")))))] "TARGET_NEON && flag_unsafe_math_optimizations" "vac.\t%0, %1, %2" [(set_attr "type" "neon_fp_compare_s")] ) (define_insn "neon_vca_insn_unspec" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] NEON_VACMP))] "TARGET_NEON" "vac.\t%0, %1, %2" [(set_attr "type" "neon_fp_compare_s")] ) (define_expand "neon_vca" [(set (match_operand: 0 "s_register_operand") (neg: (GLTE: (abs:VH (match_operand:VH 1 "s_register_operand")) (abs:VH (match_operand:VH 2 "s_register_operand")))))] "TARGET_NEON_FP16INST" { if (flag_unsafe_math_optimizations) emit_insn (gen_neon_vca_fp16insn (operands[0], operands[1], operands[2])); else emit_insn (gen_neon_vca_fp16insn_unspec (operands[0], operands[1], operands[2])); DONE; }) (define_insn "neon_vca_fp16insn" [(set (match_operand: 0 "s_register_operand" "=w") (neg: (GLTE: (abs:VH (match_operand:VH 1 "s_register_operand" "w")) (abs:VH (match_operand:VH 2 "s_register_operand" "w")))))] "TARGET_NEON_FP16INST && flag_unsafe_math_optimizations" "vac.\t%0, %1, %2" [(set_attr "type" "neon_fp_compare_s")] ) (define_insn "neon_vca_fp16insn_unspec" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")] NEON_VAGLTE))] "TARGET_NEON" "vac.\t%0, %1, %2" [(set_attr "type" "neon_fp_compare_s")] ) (define_expand "neon_vcz" [(set (match_operand: 0 "s_register_operand") (COMPARISONS: (match_operand:VH 1 "s_register_operand") (const_int 0)))] "TARGET_NEON_FP16INST" { emit_insn (gen_neon_vc (operands[0], operands[1], CONST0_RTX (mode))); DONE; }) (define_insn "neon_vtst" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w")] UNSPEC_VTST))] "TARGET_NEON" "vtst.\t%0, %1, %2" [(set_attr "type" "neon_tst")] ) (define_insn "neon_vabd" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w")] VABD))] "TARGET_NEON" "vabd.%#\t%0, %1, %2" [(set_attr "type" "neon_abd")] ) (define_insn "neon_vabd" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")] UNSPEC_VABD_F))] "TARGET_NEON_FP16INST" "vabd.\t%0, %1, %2" [(set_attr "type" "neon_abd")] ) (define_insn "neon_vabdf" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] UNSPEC_VABD_F))] "TARGET_NEON" "vabd.\t%0, %1, %2" [(set_attr "type" "neon_fp_abd_s")] ) (define_insn "neon_vabdl" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VW 1 "s_register_operand" "w") (match_operand:VW 2 "s_register_operand" "w")] VABDL))] "TARGET_NEON" "vabdl.%#\t%q0, %P1, %P2" [(set_attr "type" "neon_abd_long")] ) (define_insn "neon_vaba" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (plus:VDQIW (unspec:VDQIW [(match_operand:VDQIW 2 "s_register_operand" "w") (match_operand:VDQIW 3 "s_register_operand" "w")] VABD) (match_operand:VDQIW 1 "s_register_operand" "0")))] "TARGET_NEON" "vaba.%#\t%0, %2, %3" [(set_attr "type" "neon_arith_acc")] ) (define_insn "neon_vabal" [(set (match_operand: 0 "s_register_operand" "=w") (plus: (unspec: [(match_operand:VW 2 "s_register_operand" "w") (match_operand:VW 3 "s_register_operand" "w")] VABDL) (match_operand: 1 "s_register_operand" "0")))] "TARGET_NEON" "vabal.%#\t%q0, %P2, %P3" [(set_attr "type" "neon_arith_acc")] ) (define_expand "sadv16qi" [(use (match_operand:V4SI 0 "register_operand")) (unspec:V16QI [(use (match_operand:V16QI 1 "register_operand")) (use (match_operand:V16QI 2 "register_operand"))] VABAL) (use (match_operand:V4SI 3 "register_operand"))] "TARGET_NEON" { rtx reduc = gen_reg_rtx (V8HImode); rtx op1_highpart = gen_reg_rtx (V8QImode); rtx op2_highpart = gen_reg_rtx (V8QImode); emit_insn (gen_neon_vabdlv8qi (reduc, gen_lowpart (V8QImode, operands[1]), gen_lowpart (V8QImode, operands[2]))); emit_insn (gen_neon_vget_highv16qi (op1_highpart, operands[1])); emit_insn (gen_neon_vget_highv16qi (op2_highpart, operands[2])); emit_insn (gen_neon_vabalv8qi (reduc, reduc, op1_highpart, op2_highpart)); emit_insn (gen_neon_vpadalv8hi (operands[3], operands[3], reduc)); emit_move_insn (operands[0], operands[3]); DONE; } ) (define_insn "neon_v" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w") (match_operand:VDQIW 2 "s_register_operand" "w")] VMAXMIN))] "TARGET_NEON" "v.%#\t%0, %1, %2" [(set_attr "type" "neon_minmax")] ) (define_insn "neon_vf" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] VMAXMINF))] "TARGET_NEON" "v.\t%0, %1, %2" [(set_attr "type" "neon_fp_minmax_s")] ) (define_insn "neon_vf" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")] VMAXMINF))] "TARGET_NEON_FP16INST" "v.\t%0, %1, %2" [(set_attr "type" "neon_fp_minmax_s")] ) (define_insn "neon_vpfv4hf" [(set (match_operand:V4HF 0 "s_register_operand" "=w") (unspec:V4HF [(match_operand:V4HF 1 "s_register_operand" "w") (match_operand:V4HF 2 "s_register_operand" "w")] VPMAXMINF))] "TARGET_NEON_FP16INST" "vp.f16\t%P0, %P1, %P2" [(set_attr "type" "neon_reduc_minmax")] ) (define_insn "neon_" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")] VMAXMINFNM))] "TARGET_NEON_FP16INST" ".\t%0, %1, %2" [(set_attr "type" "neon_fp_minmax_s")] ) ;; vnm intrinsics. (define_insn "neon_" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] VMAXMINFNM))] "TARGET_NEON && TARGET_VFP5" ".\t%0, %1, %2" [(set_attr "type" "neon_fp_minmax_s")] ) ;; Vector forms for the IEEE-754 fmax()/fmin() functions (define_insn "3" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] VMAXMINFNM))] "TARGET_NEON && TARGET_VFP5" ".\t%0, %1, %2" [(set_attr "type" "neon_fp_minmax_s")] ) (define_expand "neon_vpadd" [(match_operand:VD 0 "s_register_operand") (match_operand:VD 1 "s_register_operand") (match_operand:VD 2 "s_register_operand")] "TARGET_NEON" { emit_insn (gen_neon_vpadd_internal (operands[0], operands[1], operands[2])); DONE; }) (define_insn "neon_vpaddl" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VDQIW 1 "s_register_operand" "w")] VPADDL))] "TARGET_NEON" "vpaddl.%#\t%0, %1" [(set_attr "type" "neon_reduc_add_long")] ) (define_insn "neon_vpadal" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VDQIW 2 "s_register_operand" "w")] VPADAL))] "TARGET_NEON" "vpadal.%#\t%0, %2" [(set_attr "type" "neon_reduc_add_acc")] ) (define_insn "neon_vp" [(set (match_operand:VDI 0 "s_register_operand" "=w") (unspec:VDI [(match_operand:VDI 1 "s_register_operand" "w") (match_operand:VDI 2 "s_register_operand" "w")] VPMAXMIN))] "TARGET_NEON" "vp.%#\t%0, %1, %2" [(set_attr "type" "neon_reduc_minmax")] ) (define_insn "neon_vpf" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] VPMAXMINF))] "TARGET_NEON" "vp.\t%0, %1, %2" [(set_attr "type" "neon_fp_reduc_minmax_s")] ) (define_insn "neon_vrecps" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] UNSPEC_VRECPS))] "TARGET_NEON" "vrecps.\t%0, %1, %2" [(set_attr "type" "neon_fp_recps_s")] ) (define_insn "neon_vrecps" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")] UNSPEC_VRECPS))] "TARGET_NEON_FP16INST" "vrecps.\t%0, %1, %2" [(set_attr "type" "neon_fp_recps_s")] ) (define_insn "neon_vrsqrts" [(set (match_operand:VCVTF 0 "s_register_operand" "=w") (unspec:VCVTF [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:VCVTF 2 "s_register_operand" "w")] UNSPEC_VRSQRTS))] "TARGET_NEON" "vrsqrts.\t%0, %1, %2" [(set_attr "type" "neon_fp_rsqrts_s")] ) (define_insn "neon_vrsqrts" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w") (match_operand:VH 2 "s_register_operand" "w")] UNSPEC_VRSQRTS))] "TARGET_NEON_FP16INST" "vrsqrts.\t%0, %1, %2" [(set_attr "type" "neon_fp_rsqrts_s")] ) (define_expand "neon_vabs" [(match_operand:VDQW 0 "s_register_operand") (match_operand:VDQW 1 "s_register_operand")] "TARGET_NEON" { emit_insn (gen_abs2 (operands[0], operands[1])); DONE; }) (define_insn "neon_vqabs" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")] UNSPEC_VQABS))] "TARGET_NEON" "vqabs.\t%0, %1" [(set_attr "type" "neon_qabs")] ) (define_insn "neon_bswap" [(set (match_operand:VDQHSD 0 "register_operand" "=w") (bswap:VDQHSD (match_operand:VDQHSD 1 "register_operand" "w")))] "TARGET_NEON" "vrev.8\\t%0, %1" [(set_attr "type" "neon_rev")] ) (define_expand "neon_vneg" [(match_operand:VDQW 0 "s_register_operand") (match_operand:VDQW 1 "s_register_operand")] "TARGET_NEON" { emit_insn (gen_neg2 (operands[0], operands[1])); DONE; }) ;; The vcadd and vcmla patterns are made UNSPEC for the explicitly due to the ;; fact that their usage need to guarantee that the source vectors are ;; contiguous. It would be wrong to describe the operation without being able ;; to describe the permute that is also required, but even if that is done ;; the permute would have been created as a LOAD_LANES which means the values ;; in the registers are in the wrong order. (define_insn "neon_vcadd" [(set (match_operand:VF 0 "register_operand" "=w") (unspec:VF [(match_operand:VF 1 "register_operand" "w") (match_operand:VF 2 "register_operand" "w")] VCADD))] "TARGET_COMPLEX" "vcadd.\t%0, %1, %2, #" [(set_attr "type" "neon_fcadd")] ) (define_insn "neon_vcmla" [(set (match_operand:VF 0 "register_operand" "=w") (plus:VF (match_operand:VF 1 "register_operand" "0") (unspec:VF [(match_operand:VF 2 "register_operand" "w") (match_operand:VF 3 "register_operand" "w")] VCMLA)))] "TARGET_COMPLEX" "vcmla.\t%0, %2, %3, #" [(set_attr "type" "neon_fcmla")] ) (define_insn "neon_vcmla_lane" [(set (match_operand:VF 0 "s_register_operand" "=w") (plus:VF (match_operand:VF 1 "s_register_operand" "0") (unspec:VF [(match_operand:VF 2 "s_register_operand" "w") (match_operand:VF 3 "s_register_operand" "") (match_operand:SI 4 "const_int_operand" "n")] VCMLA)))] "TARGET_COMPLEX" { operands = neon_vcmla_lane_prepare_operands (operands); return "vcmla.\t%0, %2, d%c3[%c4], #"; } [(set_attr "type" "neon_fcmla")] ) (define_insn "neon_vcmla_laneq" [(set (match_operand:VDF 0 "s_register_operand" "=w") (plus:VDF (match_operand:VDF 1 "s_register_operand" "0") (unspec:VDF [(match_operand:VDF 2 "s_register_operand" "w") (match_operand: 3 "s_register_operand" "") (match_operand:SI 4 "const_int_operand" "n")] VCMLA)))] "TARGET_COMPLEX" { operands = neon_vcmla_lane_prepare_operands (operands); return "vcmla.\t%0, %2, d%c3[%c4], #"; } [(set_attr "type" "neon_fcmla")] ) (define_insn "neon_vcmlaq_lane" [(set (match_operand:VQ_HSF 0 "s_register_operand" "=w") (plus:VQ_HSF (match_operand:VQ_HSF 1 "s_register_operand" "0") (unspec:VQ_HSF [(match_operand:VQ_HSF 2 "s_register_operand" "w") (match_operand: 3 "s_register_operand" "") (match_operand:SI 4 "const_int_operand" "n")] VCMLA)))] "TARGET_COMPLEX" { operands = neon_vcmla_lane_prepare_operands (operands); return "vcmla.\t%0, %2, d%c3[%c4], #"; } [(set_attr "type" "neon_fcmla")] ) ;; These instructions map to the __builtins for the Dot Product operations. (define_insn "neon_dot" [(set (match_operand:VCVTI 0 "register_operand" "=w") (plus:VCVTI (match_operand:VCVTI 1 "register_operand" "0") (unspec:VCVTI [(match_operand: 2 "register_operand" "w") (match_operand: 3 "register_operand" "w")] DOTPROD)))] "TARGET_DOTPROD" "vdot.\\t%0, %2, %3" [(set_attr "type" "neon_dot")] ) ;; These instructions map to the __builtins for the Dot Product operations. (define_insn "neon_usdot" [(set (match_operand:VCVTI 0 "register_operand" "=w") (plus:VCVTI (unspec:VCVTI [(match_operand: 2 "register_operand" "w") (match_operand: 3 "register_operand" "w")] UNSPEC_DOT_US) (match_operand:VCVTI 1 "register_operand" "0")))] "TARGET_I8MM" "vusdot.s8\\t%0, %2, %3" [(set_attr "type" "neon_dot")] ) ;; These instructions map to the __builtins for the Dot Product ;; indexed operations. (define_insn "neon_dot_lane" [(set (match_operand:VCVTI 0 "register_operand" "=w") (plus:VCVTI (match_operand:VCVTI 1 "register_operand" "0") (unspec:VCVTI [(match_operand: 2 "register_operand" "w") (match_operand:V8QI 3 "register_operand" "t") (match_operand:SI 4 "immediate_operand" "i")] DOTPROD)))] "TARGET_DOTPROD" { operands[4] = GEN_INT (NEON_ENDIAN_LANE_N (V8QImode, INTVAL (operands[4]))); return "vdot.\\t%0, %2, %P3[%c4]"; } [(set_attr "type" "neon_dot")] ) ;; These instructions map to the __builtins for the Dot Product ;; indexed operations in the v8.6 I8MM extension. (define_insn "neon_dot_lane" [(set (match_operand:VCVTI 0 "register_operand" "=w") (plus:VCVTI (unspec:VCVTI [(match_operand: 2 "register_operand" "w") (match_operand:V8QI 3 "register_operand" "t") (match_operand:SI 4 "immediate_operand" "i")] DOTPROD_I8MM) (match_operand:VCVTI 1 "register_operand" "0")))] "TARGET_I8MM" { operands[4] = GEN_INT (INTVAL (operands[4])); return "vdot.\\t%0, %2, %P3[%c4]"; } [(set_attr "type" "neon_dot")] ) ;; These expands map to the Dot Product optab the vectorizer checks for. ;; The auto-vectorizer expects a dot product builtin that also does an ;; accumulation into the provided register. ;; Given the following pattern ;; ;; for (i=0; idot_prod" [(set (match_operand:VCVTI 0 "register_operand") (plus:VCVTI (unspec:VCVTI [(match_operand: 1 "register_operand") (match_operand: 2 "register_operand")] DOTPROD) (match_operand:VCVTI 3 "register_operand")))] "TARGET_DOTPROD" { emit_insn ( gen_neon_dot (operands[3], operands[3], operands[1], operands[2])); emit_insn (gen_rtx_SET (operands[0], operands[3])); DONE; }) (define_expand "neon_copysignf" [(match_operand:VCVTF 0 "register_operand") (match_operand:VCVTF 1 "register_operand") (match_operand:VCVTF 2 "register_operand")] "TARGET_NEON" "{ rtx v_bitmask_cast; rtx v_bitmask = gen_reg_rtx (mode); rtx c = gen_int_mode (0x80000000, SImode); emit_move_insn (v_bitmask, gen_const_vec_duplicate (mode, c)); emit_move_insn (operands[0], operands[2]); v_bitmask_cast = simplify_gen_subreg (mode, v_bitmask, mode, 0); emit_insn (gen_neon_vbsl (operands[0], v_bitmask_cast, operands[0], operands[1])); DONE; }" ) (define_insn "neon_vqneg" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")] UNSPEC_VQNEG))] "TARGET_NEON" "vqneg.\t%0, %1" [(set_attr "type" "neon_qneg")] ) (define_insn "neon_vcls" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")] UNSPEC_VCLS))] "TARGET_NEON" "vcls.\t%0, %1" [(set_attr "type" "neon_cls")] ) (define_insn "clz2" [(set (match_operand:VDQIW 0 "s_register_operand" "=w") (clz:VDQIW (match_operand:VDQIW 1 "s_register_operand" "w")))] "TARGET_NEON" "vclz.\t%0, %1" [(set_attr "type" "neon_cnt")] ) (define_expand "neon_vclz" [(match_operand:VDQIW 0 "s_register_operand") (match_operand:VDQIW 1 "s_register_operand")] "TARGET_NEON" { emit_insn (gen_clz2 (operands[0], operands[1])); DONE; }) (define_insn "popcount2" [(set (match_operand:VE 0 "s_register_operand" "=w") (popcount:VE (match_operand:VE 1 "s_register_operand" "w")))] "TARGET_NEON" "vcnt.\t%0, %1" [(set_attr "type" "neon_cnt")] ) (define_expand "neon_vcnt" [(match_operand:VE 0 "s_register_operand") (match_operand:VE 1 "s_register_operand")] "TARGET_NEON" { emit_insn (gen_popcount2 (operands[0], operands[1])); DONE; }) (define_insn "neon_vrecpe" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w")] UNSPEC_VRECPE))] "TARGET_NEON_FP16INST" "vrecpe.f16\t%0, %1" [(set_attr "type" "neon_fp_recpe_s")] ) (define_insn "neon_vrecpe" [(set (match_operand:V32 0 "s_register_operand" "=w") (unspec:V32 [(match_operand:V32 1 "s_register_operand" "w")] UNSPEC_VRECPE))] "TARGET_NEON" "vrecpe.\t%0, %1" [(set_attr "type" "neon_fp_recpe_s")] ) (define_insn "neon_vrsqrte" [(set (match_operand:V32 0 "s_register_operand" "=w") (unspec:V32 [(match_operand:V32 1 "s_register_operand" "w")] UNSPEC_VRSQRTE))] "TARGET_NEON" "vrsqrte.\t%0, %1" [(set_attr "type" "neon_fp_rsqrte_s")] ) (define_expand "neon_vmvn" [(match_operand:VDQIW 0 "s_register_operand") (match_operand:VDQIW 1 "s_register_operand")] "TARGET_NEON" { emit_insn (gen_one_cmpl2 (operands[0], operands[1])); DONE; }) (define_insn "neon_vget_lane_sext_internal" [(set (match_operand:SI 0 "s_register_operand" "=r") (sign_extend:SI (vec_select: (match_operand:VD 1 "s_register_operand" "w") (parallel [(match_operand:SI 2 "immediate_operand" "i")]))))] "TARGET_NEON" { if (BYTES_BIG_ENDIAN) { int elt = INTVAL (operands[2]); elt = GET_MODE_NUNITS (mode) - 1 - elt; operands[2] = GEN_INT (elt); } return "vmov.s\t%0, %P1[%c2]"; } [(set_attr "type" "neon_to_gp")] ) (define_insn "neon_vget_lane_zext_internal" [(set (match_operand:SI 0 "s_register_operand" "=r") (zero_extend:SI (vec_select: (match_operand:VD 1 "s_register_operand" "w") (parallel [(match_operand:SI 2 "immediate_operand" "i")]))))] "TARGET_NEON" { if (BYTES_BIG_ENDIAN) { int elt = INTVAL (operands[2]); elt = GET_MODE_NUNITS (mode) - 1 - elt; operands[2] = GEN_INT (elt); } return "vmov.u\t%0, %P1[%c2]"; } [(set_attr "type" "neon_to_gp")] ) (define_insn "neon_vget_lane_sext_internal" [(set (match_operand:SI 0 "s_register_operand" "=r") (sign_extend:SI (vec_select: (match_operand:VQ2 1 "s_register_operand" "w") (parallel [(match_operand:SI 2 "immediate_operand" "i")]))))] "TARGET_NEON" { rtx ops[3]; int regno = REGNO (operands[1]); unsigned int halfelts = GET_MODE_NUNITS (mode) / 2; unsigned int elt = INTVAL (operands[2]); unsigned int elt_adj = elt % halfelts; if (BYTES_BIG_ENDIAN) elt_adj = halfelts - 1 - elt_adj; ops[0] = operands[0]; ops[1] = gen_rtx_REG (mode, regno + 2 * (elt / halfelts)); ops[2] = GEN_INT (elt_adj); output_asm_insn ("vmov.s\t%0, %P1[%c2]", ops); return ""; } [(set_attr "type" "neon_to_gp_q")] ) (define_insn "neon_vget_lane_zext_internal" [(set (match_operand:SI 0 "s_register_operand" "=r") (zero_extend:SI (vec_select: (match_operand:VQ2 1 "s_register_operand" "w") (parallel [(match_operand:SI 2 "immediate_operand" "i")]))))] "TARGET_NEON" { rtx ops[3]; int regno = REGNO (operands[1]); unsigned int halfelts = GET_MODE_NUNITS (mode) / 2; unsigned int elt = INTVAL (operands[2]); unsigned int elt_adj = elt % halfelts; if (BYTES_BIG_ENDIAN) elt_adj = halfelts - 1 - elt_adj; ops[0] = operands[0]; ops[1] = gen_rtx_REG (mode, regno + 2 * (elt / halfelts)); ops[2] = GEN_INT (elt_adj); output_asm_insn ("vmov.u\t%0, %P1[%c2]", ops); return ""; } [(set_attr "type" "neon_to_gp_q")] ) (define_expand "neon_vget_lane" [(match_operand: 0 "s_register_operand") (match_operand:VDQW 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { if (BYTES_BIG_ENDIAN) { /* The intrinsics are defined in terms of a model where the element ordering in memory is vldm order, whereas the generic RTL is defined in terms of a model where the element ordering in memory is array order. Convert the lane number to conform to this model. */ unsigned int elt = INTVAL (operands[2]); unsigned int reg_nelts = 64 / GET_MODE_UNIT_BITSIZE (mode); elt ^= reg_nelts - 1; operands[2] = GEN_INT (elt); } if (GET_MODE_UNIT_BITSIZE (mode) == 32) emit_insn (gen_vec_extract (operands[0], operands[1], operands[2])); else emit_insn (gen_neon_vget_lane_sext_internal (operands[0], operands[1], operands[2])); DONE; }) (define_expand "neon_vget_laneu" [(match_operand: 0 "s_register_operand") (match_operand:VDQIW 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { if (BYTES_BIG_ENDIAN) { /* The intrinsics are defined in terms of a model where the element ordering in memory is vldm order, whereas the generic RTL is defined in terms of a model where the element ordering in memory is array order. Convert the lane number to conform to this model. */ unsigned int elt = INTVAL (operands[2]); unsigned int reg_nelts = 64 / GET_MODE_UNIT_BITSIZE (mode); elt ^= reg_nelts - 1; operands[2] = GEN_INT (elt); } if (GET_MODE_UNIT_BITSIZE (mode) == 32) emit_insn (gen_vec_extract (operands[0], operands[1], operands[2])); else emit_insn (gen_neon_vget_lane_zext_internal (operands[0], operands[1], operands[2])); DONE; }) (define_expand "neon_vget_lanedi" [(match_operand:DI 0 "s_register_operand") (match_operand:DI 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { emit_move_insn (operands[0], operands[1]); DONE; }) (define_expand "neon_vget_lanev2di" [(match_operand:DI 0 "s_register_operand") (match_operand:V2DI 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { int lane; if (BYTES_BIG_ENDIAN) { /* The intrinsics are defined in terms of a model where the element ordering in memory is vldm order, whereas the generic RTL is defined in terms of a model where the element ordering in memory is array order. Convert the lane number to conform to this model. */ unsigned int elt = INTVAL (operands[2]); unsigned int reg_nelts = 2; elt ^= reg_nelts - 1; operands[2] = GEN_INT (elt); } lane = INTVAL (operands[2]); gcc_assert ((lane ==0) || (lane == 1)); emit_move_insn (operands[0], lane == 0 ? gen_lowpart (DImode, operands[1]) : gen_highpart (DImode, operands[1])); DONE; }) (define_expand "neon_vset_lane" [(match_operand:VDQ 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:VDQ 2 "s_register_operand") (match_operand:SI 3 "immediate_operand")] "TARGET_NEON" { unsigned int elt = INTVAL (operands[3]); if (BYTES_BIG_ENDIAN) { unsigned int reg_nelts = 64 / GET_MODE_UNIT_BITSIZE (mode); elt ^= reg_nelts - 1; } emit_insn (gen_vec_set_internal (operands[0], operands[1], GEN_INT (1 << elt), operands[2])); DONE; }) ; See neon_vget_lanedi comment for reasons operands 2 & 3 are ignored. (define_expand "neon_vset_lanedi" [(match_operand:DI 0 "s_register_operand") (match_operand:DI 1 "s_register_operand") (match_operand:DI 2 "s_register_operand") (match_operand:SI 3 "immediate_operand")] "TARGET_NEON" { emit_move_insn (operands[0], operands[1]); DONE; }) (define_expand "neon_vcreate" [(match_operand:VD_RE 0 "s_register_operand") (match_operand:DI 1 "general_operand")] "TARGET_NEON" { rtx src = gen_lowpart (mode, operands[1]); emit_move_insn (operands[0], src); DONE; }) (define_insn "neon_vdup_n" [(set (match_operand:VX 0 "s_register_operand" "=w") (vec_duplicate:VX (match_operand: 1 "s_register_operand" "r")))] "TARGET_NEON" "vdup.\t%0, %1" [(set_attr "type" "neon_from_gp")] ) (define_insn "neon_vdup_nv4hf" [(set (match_operand:V4HF 0 "s_register_operand" "=w") (vec_duplicate:V4HF (match_operand:HF 1 "s_register_operand" "r")))] "TARGET_NEON" "vdup.16\t%P0, %1" [(set_attr "type" "neon_from_gp")] ) (define_insn "neon_vdup_nv8hf" [(set (match_operand:V8HF 0 "s_register_operand" "=w") (vec_duplicate:V8HF (match_operand:HF 1 "s_register_operand" "r")))] "TARGET_NEON" "vdup.16\t%q0, %1" [(set_attr "type" "neon_from_gp_q")] ) (define_insn "neon_vdup_nv4bf" [(set (match_operand:V4BF 0 "s_register_operand" "=w") (vec_duplicate:V4BF (match_operand:BF 1 "s_register_operand" "r")))] "TARGET_NEON" "vdup.16\t%P0, %1" [(set_attr "type" "neon_from_gp")] ) (define_insn "neon_vdup_nv8bf" [(set (match_operand:V8BF 0 "s_register_operand" "=w") (vec_duplicate:V8BF (match_operand:BF 1 "s_register_operand" "r")))] "TARGET_NEON" "vdup.16\t%q0, %1" [(set_attr "type" "neon_from_gp_q")] ) (define_insn "neon_vdup_n" [(set (match_operand:V32 0 "s_register_operand" "=w,w") (vec_duplicate:V32 (match_operand: 1 "s_register_operand" "r,t")))] "TARGET_NEON" "@ vdup.\t%0, %1 vdup.\t%0, %y1" [(set_attr "type" "neon_from_gp,neon_dup")] ) (define_expand "neon_vdup_ndi" [(match_operand:DI 0 "s_register_operand") (match_operand:DI 1 "s_register_operand")] "TARGET_NEON" { emit_move_insn (operands[0], operands[1]); DONE; } ) (define_insn "neon_vdup_nv2di" [(set (match_operand:V2DI 0 "s_register_operand" "=w,w") (vec_duplicate:V2DI (match_operand:DI 1 "s_register_operand" "r,w")))] "TARGET_NEON" "@ vmov\t%e0, %Q1, %R1\;vmov\t%f0, %Q1, %R1 vmov\t%e0, %P1\;vmov\t%f0, %P1" [(set_attr "length" "8") (set_attr "type" "multiple")] ) (define_insn "neon_vdup_lane_internal" [(set (match_operand:VDQW 0 "s_register_operand" "=w") (vec_duplicate:VDQW (vec_select: (match_operand: 1 "s_register_operand" "w") (parallel [(match_operand:SI 2 "immediate_operand" "i")]))))] "TARGET_NEON" { if (BYTES_BIG_ENDIAN) { int elt = INTVAL (operands[2]); elt = GET_MODE_NUNITS (mode) - 1 - elt; operands[2] = GEN_INT (elt); } if () return "vdup.\t%P0, %P1[%c2]"; else return "vdup.\t%q0, %P1[%c2]"; } [(set_attr "type" "neon_dup")] ) (define_insn "neon_vdup_lane_internal" [(set (match_operand:VHFBF 0 "s_register_operand" "=w") (vec_duplicate:VHFBF (vec_select: (match_operand: 1 "s_register_operand" "w") (parallel [(match_operand:SI 2 "immediate_operand" "i")]))))] "TARGET_NEON && (TARGET_FP16 || TARGET_BF16_SIMD)" { if (BYTES_BIG_ENDIAN) { int elt = INTVAL (operands[2]); elt = GET_MODE_NUNITS (mode) - 1 - elt; operands[2] = GEN_INT (elt); } if () return "vdup.\t%P0, %P1[%c2]"; else return "vdup.\t%q0, %P1[%c2]"; } [(set_attr "type" "neon_dup")] ) (define_expand "neon_vdup_lane" [(match_operand:VDQW 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { if (BYTES_BIG_ENDIAN) { unsigned int elt = INTVAL (operands[2]); unsigned int reg_nelts = 64 / GET_MODE_UNIT_BITSIZE (mode); elt ^= reg_nelts - 1; operands[2] = GEN_INT (elt); } emit_insn (gen_neon_vdup_lane_internal (operands[0], operands[1], operands[2])); DONE; }) (define_expand "neon_vdup_lane" [(match_operand:VHFBF 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON && (TARGET_FP16 || TARGET_BF16_SIMD)" { if (BYTES_BIG_ENDIAN) { unsigned int elt = INTVAL (operands[2]); unsigned int reg_nelts = 64 / GET_MODE_UNIT_BITSIZE (mode); elt ^= reg_nelts - 1; operands[2] = GEN_INT (elt); } emit_insn (gen_neon_vdup_lane_internal (operands[0], operands[1], operands[2])); DONE; }) ; Scalar index is ignored, since only zero is valid here. (define_expand "neon_vdup_lanedi" [(match_operand:DI 0 "s_register_operand") (match_operand:DI 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { emit_move_insn (operands[0], operands[1]); DONE; }) ; Likewise for v2di, as the DImode second operand has only a single element. (define_expand "neon_vdup_lanev2di" [(match_operand:V2DI 0 "s_register_operand") (match_operand:DI 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { emit_insn (gen_neon_vdup_nv2di (operands[0], operands[1])); DONE; }) ; Disabled before reload because we don't want combine doing something silly, ; but used by the post-reload expansion of neon_vcombine. (define_insn "*neon_vswp" [(set (match_operand:VDQX 0 "s_register_operand" "+w") (match_operand:VDQX 1 "s_register_operand" "+w")) (set (match_dup 1) (match_dup 0))] "TARGET_NEON && reload_completed" "vswp\t%0, %1" [(set_attr "type" "neon_permute")] ) ;; In this insn, operand 1 should be low, and operand 2 the high part of the ;; dest vector. ;; FIXME: A different implementation of this builtin could make it much ;; more likely that we wouldn't actually need to output anything (we could make ;; it so that the reg allocator puts things in the right places magically ;; instead). Lack of subregs for vectors makes that tricky though, I think. (define_insn_and_split "neon_vcombine" [(set (match_operand: 0 "s_register_operand" "=w") (vec_concat: (match_operand:VDX 1 "s_register_operand" "w") (match_operand:VDX 2 "s_register_operand" "w")))] "TARGET_NEON" "#" "&& reload_completed" [(const_int 0)] { neon_split_vcombine (operands); DONE; } [(set_attr "type" "multiple")] ) (define_expand "neon_vget_high" [(match_operand: 0 "s_register_operand") (match_operand:VQXBF 1 "s_register_operand")] "TARGET_NEON" { emit_move_insn (operands[0], simplify_gen_subreg (mode, operands[1], mode, GET_MODE_SIZE (mode))); DONE; }) (define_expand "neon_vget_low" [(match_operand: 0 "s_register_operand") (match_operand:VQX 1 "s_register_operand")] "TARGET_NEON" { emit_move_insn (operands[0], simplify_gen_subreg (mode, operands[1], mode, 0)); DONE; }) (define_insn "float2" [(set (match_operand: 0 "s_register_operand" "=w") (float: (match_operand:VCVTI 1 "s_register_operand" "w")))] "TARGET_NEON && !flag_rounding_math" "vcvt.f32.s32\t%0, %1" [(set_attr "type" "neon_int_to_fp_")] ) (define_insn "floatuns2" [(set (match_operand: 0 "s_register_operand" "=w") (unsigned_float: (match_operand:VCVTI 1 "s_register_operand" "w")))] "TARGET_NEON && !flag_rounding_math" "vcvt.f32.u32\t%0, %1" [(set_attr "type" "neon_int_to_fp_")] ) (define_insn "fix_trunc2" [(set (match_operand: 0 "s_register_operand" "=w") (fix: (match_operand:VCVTF 1 "s_register_operand" "w")))] "TARGET_NEON" "vcvt.s32.f32\t%0, %1" [(set_attr "type" "neon_fp_to_int_")] ) (define_insn "fixuns_trunc2" [(set (match_operand: 0 "s_register_operand" "=w") (unsigned_fix: (match_operand:VCVTF 1 "s_register_operand" "w")))] "TARGET_NEON" "vcvt.u32.f32\t%0, %1" [(set_attr "type" "neon_fp_to_int_")] ) (define_insn "neon_vcvt" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VCVTF 1 "s_register_operand" "w")] VCVT_US))] "TARGET_NEON" "vcvt.%#32.f32\t%0, %1" [(set_attr "type" "neon_fp_to_int_")] ) (define_insn "neon_vcvt" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VCVTI 1 "s_register_operand" "w")] VCVT_US))] "TARGET_NEON" "vcvt.f32.%#32\t%0, %1" [(set_attr "type" "neon_int_to_fp_")] ) (define_insn "neon_vcvtv4sfv4hf" [(set (match_operand:V4SF 0 "s_register_operand" "=w") (unspec:V4SF [(match_operand:V4HF 1 "s_register_operand" "w")] UNSPEC_VCVT))] "TARGET_NEON && TARGET_FP16" "vcvt.f32.f16\t%q0, %P1" [(set_attr "type" "neon_fp_cvt_widen_h")] ) (define_insn "neon_vcvtv4hfv4sf" [(set (match_operand:V4HF 0 "s_register_operand" "=w") (unspec:V4HF [(match_operand:V4SF 1 "s_register_operand" "w")] UNSPEC_VCVT))] "TARGET_NEON && TARGET_FP16" "vcvt.f16.f32\t%P0, %q1" [(set_attr "type" "neon_fp_cvt_narrow_s_q")] ) (define_insn "neon_vcvt" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VCVTHI 1 "s_register_operand" "w")] VCVT_US))] "TARGET_NEON_FP16INST" "vcvt.f16.%#16\t%0, %1" [(set_attr "type" "neon_int_to_fp_")] ) (define_insn "neon_vcvt" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VH 1 "s_register_operand" "w")] VCVT_US))] "TARGET_NEON_FP16INST" "vcvt.%#16.f16\t%0, %1" [(set_attr "type" "neon_fp_to_int_")] ) (define_insn "neon_vcvt_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VCVTF 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VCVT_US_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 1, 33); return "vcvt.%#32.f32\t%0, %1, %2"; } [(set_attr "type" "neon_fp_to_int_")] ) (define_insn "neon_vcvt_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VH 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VCVT_US_N))] "TARGET_NEON_FP16INST" { arm_const_bounds (operands[2], 0, 17); return "vcvt.%#16.f16\t%0, %1, %2"; } [(set_attr "type" "neon_fp_to_int_")] ) (define_insn "neon_vcvt_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VCVTI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VCVT_US_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 1, 33); return "vcvt.f32.%#32\t%0, %1, %2"; } [(set_attr "type" "neon_int_to_fp_")] ) (define_insn "neon_vcvt_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VCVTHI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VCVT_US_N))] "TARGET_NEON_FP16INST" { arm_const_bounds (operands[2], 0, 17); return "vcvt.f16.%#16\t%0, %1, %2"; } [(set_attr "type" "neon_int_to_fp_")] ) (define_insn "neon_vcvt" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VH 1 "s_register_operand" "w")] VCVT_HF_US))] "TARGET_NEON_FP16INST" "vcvt.%#16.f16\t%0, %1" [(set_attr "type" "neon_fp_to_int_")] ) (define_insn "neon_vmovn" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w")] UNSPEC_VMOVN))] "TARGET_NEON" "vmovn.\t%P0, %q1" [(set_attr "type" "neon_shift_imm_narrow_q")] ) (define_insn "neon_vqmovn" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w")] VQMOVN))] "TARGET_NEON" "vqmovn.%#\t%P0, %q1" [(set_attr "type" "neon_sat_shift_imm_narrow_q")] ) (define_insn "neon_vqmovun" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w")] UNSPEC_VQMOVUN))] "TARGET_NEON" "vqmovun.\t%P0, %q1" [(set_attr "type" "neon_sat_shift_imm_narrow_q")] ) (define_insn "neon_vmovl" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VW 1 "s_register_operand" "w")] VMOVL))] "TARGET_NEON" "vmovl.%#\t%q0, %P1" [(set_attr "type" "neon_shift_imm_long")] ) (define_insn "neon_vmul_lane" [(set (match_operand:VMD 0 "s_register_operand" "=w") (unspec:VMD [(match_operand:VMD 1 "s_register_operand" "w") (match_operand:VMD 2 "s_register_operand" "") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VMUL_LANE))] "TARGET_NEON" { return "vmul.\t%P0, %P1, %P2[%c3]"; } [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mul_s_scalar") (const_string "neon_mul__scalar")))] ) (define_insn "neon_vmul_lane" [(set (match_operand:VMQ 0 "s_register_operand" "=w") (unspec:VMQ [(match_operand:VMQ 1 "s_register_operand" "w") (match_operand: 2 "s_register_operand" "") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VMUL_LANE))] "TARGET_NEON" { return "vmul.\t%q0, %q1, %P2[%c3]"; } [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mul_s_scalar") (const_string "neon_mul__scalar")))] ) (define_insn "neon_vmul_lane" [(set (match_operand:VH 0 "s_register_operand" "=w") (unspec:VH [(match_operand:VH 1 "s_register_operand" "w") (match_operand:V4HF 2 "s_register_operand" "") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VMUL_LANE))] "TARGET_NEON_FP16INST" "vmul.f16\t%0, %1, %P2[%c3]" [(set_attr "type" "neon_fp_mul_s_scalar")] ) (define_insn "neon_vmull_lane" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VMDI 1 "s_register_operand" "w") (match_operand:VMDI 2 "s_register_operand" "") (match_operand:SI 3 "immediate_operand" "i")] VMULL_LANE))] "TARGET_NEON" { return "vmull.%#\t%q0, %P1, %P2[%c3]"; } [(set_attr "type" "neon_mul__scalar_long")] ) (define_insn "neon_vqdmull_lane" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VMDI 1 "s_register_operand" "w") (match_operand:VMDI 2 "s_register_operand" "") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VQDMULL_LANE))] "TARGET_NEON" { return "vqdmull.\t%q0, %P1, %P2[%c3]"; } [(set_attr "type" "neon_sat_mul__scalar_long")] ) (define_insn "neon_vqdmulh_lane" [(set (match_operand:VMQI 0 "s_register_operand" "=w") (unspec:VMQI [(match_operand:VMQI 1 "s_register_operand" "w") (match_operand: 2 "s_register_operand" "") (match_operand:SI 3 "immediate_operand" "i")] VQDMULH_LANE))] "TARGET_NEON" { return "vqdmulh.\t%q0, %q1, %P2[%c3]"; } [(set_attr "type" "neon_sat_mul__scalar_q")] ) (define_insn "neon_vqdmulh_lane" [(set (match_operand:VMDI 0 "s_register_operand" "=w") (unspec:VMDI [(match_operand:VMDI 1 "s_register_operand" "w") (match_operand:VMDI 2 "s_register_operand" "") (match_operand:SI 3 "immediate_operand" "i")] VQDMULH_LANE))] "TARGET_NEON" { return "vqdmulh.\t%P0, %P1, %P2[%c3]"; } [(set_attr "type" "neon_sat_mul__scalar_q")] ) ;; vqrdmlah_lane, vqrdmlsh_lane (define_insn "neon_vqrdmlh_lane" [(set (match_operand:VMQI 0 "s_register_operand" "=w") (unspec:VMQI [(match_operand:VMQI 1 "s_register_operand" "0") (match_operand:VMQI 2 "s_register_operand" "w") (match_operand: 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] VQRDMLH_AS))] "TARGET_NEON_RDMA" { return "vqrdmlh.\t%q0, %q2, %P3[%c4]"; } [(set_attr "type" "neon_mla__scalar")] ) (define_insn "neon_vqrdmlh_lane" [(set (match_operand:VMDI 0 "s_register_operand" "=w") (unspec:VMDI [(match_operand:VMDI 1 "s_register_operand" "0") (match_operand:VMDI 2 "s_register_operand" "w") (match_operand:VMDI 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] VQRDMLH_AS))] "TARGET_NEON_RDMA" { return "vqrdmlh.\t%P0, %P2, %P3[%c4]"; } [(set_attr "type" "neon_mla__scalar")] ) (define_insn "neon_vmla_lane" [(set (match_operand:VMD 0 "s_register_operand" "=w") (unspec:VMD [(match_operand:VMD 1 "s_register_operand" "0") (match_operand:VMD 2 "s_register_operand" "w") (match_operand:VMD 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_VMLA_LANE))] "TARGET_NEON" { return "vmla.\t%P0, %P2, %P3[%c4]"; } [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s_scalar") (const_string "neon_mla__scalar")))] ) (define_insn "neon_vmla_lane" [(set (match_operand:VMQ 0 "s_register_operand" "=w") (unspec:VMQ [(match_operand:VMQ 1 "s_register_operand" "0") (match_operand:VMQ 2 "s_register_operand" "w") (match_operand: 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_VMLA_LANE))] "TARGET_NEON" { return "vmla.\t%q0, %q2, %P3[%c4]"; } [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s_scalar") (const_string "neon_mla__scalar")))] ) (define_insn "neon_vmlal_lane" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VMDI 2 "s_register_operand" "w") (match_operand:VMDI 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] VMLAL_LANE))] "TARGET_NEON" { return "vmlal.%#\t%q0, %P2, %P3[%c4]"; } [(set_attr "type" "neon_mla__scalar_long")] ) (define_insn "neon_vqdmlal_lane" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VMDI 2 "s_register_operand" "w") (match_operand:VMDI 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_VQDMLAL_LANE))] "TARGET_NEON" { return "vqdmlal.\t%q0, %P2, %P3[%c4]"; } [(set_attr "type" "neon_sat_mla__scalar_long")] ) (define_insn "neon_vmls_lane" [(set (match_operand:VMD 0 "s_register_operand" "=w") (unspec:VMD [(match_operand:VMD 1 "s_register_operand" "0") (match_operand:VMD 2 "s_register_operand" "w") (match_operand:VMD 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_VMLS_LANE))] "TARGET_NEON" { return "vmls.\t%P0, %P2, %P3[%c4]"; } [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s_scalar") (const_string "neon_mla__scalar")))] ) (define_insn "neon_vmls_lane" [(set (match_operand:VMQ 0 "s_register_operand" "=w") (unspec:VMQ [(match_operand:VMQ 1 "s_register_operand" "0") (match_operand:VMQ 2 "s_register_operand" "w") (match_operand: 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_VMLS_LANE))] "TARGET_NEON" { return "vmls.\t%q0, %q2, %P3[%c4]"; } [(set (attr "type") (if_then_else (match_test "") (const_string "neon_fp_mla_s_scalar") (const_string "neon_mla__scalar")))] ) (define_insn "neon_vmlsl_lane" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VMDI 2 "s_register_operand" "w") (match_operand:VMDI 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] VMLSL_LANE))] "TARGET_NEON" { return "vmlsl.%#\t%q0, %P2, %P3[%c4]"; } [(set_attr "type" "neon_mla__scalar_long")] ) (define_insn "neon_vqdmlsl_lane" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand: 1 "s_register_operand" "0") (match_operand:VMDI 2 "s_register_operand" "w") (match_operand:VMDI 3 "s_register_operand" "") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_VQDMLSL_LANE))] "TARGET_NEON" { return "vqdmlsl.\t%q0, %P2, %P3[%c4]"; } [(set_attr "type" "neon_sat_mla__scalar_long")] ) ; FIXME: For the "_n" multiply/multiply-accumulate insns, we copy a value in a ; core register into a temp register, then use a scalar taken from that. This ; isn't an optimal solution if e.g. the scalar has just been read from memory ; or extracted from another vector. The latter case it's currently better to ; use the "_lane" variant, and the former case can probably be implemented ; using vld1_lane, but that hasn't been done yet. (define_expand "neon_vmul_n" [(match_operand:VMD 0 "s_register_operand") (match_operand:VMD 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vmul_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmul_n" [(match_operand:VMQ 0 "s_register_operand") (match_operand:VMQ 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vmul_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmul_n" [(match_operand:VH 0 "s_register_operand") (match_operand:VH 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON_FP16INST" { rtx tmp = gen_reg_rtx (V4HFmode); emit_insn (gen_neon_vset_lanev4hf (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vmul_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmulls_n" [(match_operand: 0 "s_register_operand") (match_operand:VMDI 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vmulls_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmullu_n" [(match_operand: 0 "s_register_operand") (match_operand:VMDI 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vmullu_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vqdmull_n" [(match_operand: 0 "s_register_operand") (match_operand:VMDI 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vqdmull_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vqdmulh_n" [(match_operand:VMDI 0 "s_register_operand") (match_operand:VMDI 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vqdmulh_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vqrdmulh_n" [(match_operand:VMDI 0 "s_register_operand") (match_operand:VMDI 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vqrdmulh_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vqdmulh_n" [(match_operand:VMQI 0 "s_register_operand") (match_operand:VMQI 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vqdmulh_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vqrdmulh_n" [(match_operand:VMQI 0 "s_register_operand") (match_operand:VMQI 1 "s_register_operand") (match_operand: 2 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[2], tmp, const0_rtx)); emit_insn (gen_neon_vqrdmulh_lane (operands[0], operands[1], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmla_n" [(match_operand:VMD 0 "s_register_operand") (match_operand:VMD 1 "s_register_operand") (match_operand:VMD 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmla_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmla_n" [(match_operand:VMQ 0 "s_register_operand") (match_operand:VMQ 1 "s_register_operand") (match_operand:VMQ 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmla_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmlals_n" [(match_operand: 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:VMDI 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmlals_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmlalu_n" [(match_operand: 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:VMDI 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmlalu_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vqdmlal_n" [(match_operand: 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:VMDI 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vqdmlal_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmls_n" [(match_operand:VMD 0 "s_register_operand") (match_operand:VMD 1 "s_register_operand") (match_operand:VMD 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmls_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmls_n" [(match_operand:VMQ 0 "s_register_operand") (match_operand:VMQ 1 "s_register_operand") (match_operand:VMQ 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmls_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmlsls_n" [(match_operand: 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:VMDI 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmlsls_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vmlslu_n" [(match_operand: 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:VMDI 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vmlslu_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_expand "neon_vqdmlsl_n" [(match_operand: 0 "s_register_operand") (match_operand: 1 "s_register_operand") (match_operand:VMDI 2 "s_register_operand") (match_operand: 3 "s_register_operand")] "TARGET_NEON" { rtx tmp = gen_reg_rtx (mode); emit_insn (gen_neon_vset_lane (tmp, operands[3], tmp, const0_rtx)); emit_insn (gen_neon_vqdmlsl_lane (operands[0], operands[1], operands[2], tmp, const0_rtx)); DONE; }) (define_insn "@neon_vext" [(set (match_operand:VDQX 0 "s_register_operand" "=w") (unspec:VDQX [(match_operand:VDQX 1 "s_register_operand" "w") (match_operand:VDQX 2 "s_register_operand" "w") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VEXT))] "TARGET_NEON" { arm_const_bounds (operands[3], 0, GET_MODE_NUNITS (mode)); return "vext.\t%0, %1, %2, %3"; } [(set_attr "type" "neon_ext")] ) (define_insn "@neon_vrev64" [(set (match_operand:VDQ 0 "s_register_operand" "=w") (unspec:VDQ [(match_operand:VDQ 1 "s_register_operand" "w")] UNSPEC_VREV64))] "TARGET_NEON" "vrev64.\t%0, %1" [(set_attr "type" "neon_rev")] ) (define_insn "@neon_vrev32" [(set (match_operand:VX 0 "s_register_operand" "=w") (unspec:VX [(match_operand:VX 1 "s_register_operand" "w")] UNSPEC_VREV32))] "TARGET_NEON" "vrev32.\t%0, %1" [(set_attr "type" "neon_rev")] ) (define_insn "@neon_vrev16" [(set (match_operand:VE 0 "s_register_operand" "=w") (unspec:VE [(match_operand:VE 1 "s_register_operand" "w")] UNSPEC_VREV16))] "TARGET_NEON" "vrev16.\t%0, %1" [(set_attr "type" "neon_rev")] ) ; vbsl_* intrinsics may compile to any of vbsl/vbif/vbit depending on register ; allocation. For an intrinsic of form: ; rD = vbsl_* (rS, rN, rM) ; We can use any of: ; vbsl rS, rN, rM (if D = S) ; vbit rD, rN, rS (if D = M, so 1-bits in rS choose bits from rN, else rM) ; vbif rD, rM, rS (if D = N, so 0-bits in rS choose bits from rM, else rN) (define_insn "neon_vbsl_internal" [(set (match_operand:VDQX 0 "s_register_operand" "=w,w,w") (unspec:VDQX [(match_operand:VDQX 1 "s_register_operand" " 0,w,w") (match_operand:VDQX 2 "s_register_operand" " w,w,0") (match_operand:VDQX 3 "s_register_operand" " w,0,w")] UNSPEC_VBSL))] "TARGET_NEON" "@ vbsl\t%0, %2, %3 vbit\t%0, %2, %1 vbif\t%0, %3, %1" [(set_attr "type" "neon_bsl")] ) (define_expand "neon_vbsl" [(set (match_operand:VDQX 0 "s_register_operand") (unspec:VDQX [(match_operand: 1 "s_register_operand") (match_operand:VDQX 2 "s_register_operand") (match_operand:VDQX 3 "s_register_operand")] UNSPEC_VBSL))] "TARGET_NEON" { /* We can't alias operands together if they have different modes. */ operands[1] = gen_lowpart (mode, operands[1]); }) ;; vshl, vrshl (define_insn "neon_v" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:VDQIX 2 "s_register_operand" "w")] VSHL))] "TARGET_NEON" "v.%#\t%0, %1, %2" [(set_attr "type" "neon_shift_imm")] ) ;; vqshl, vqrshl (define_insn "neon_v" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:VDQIX 2 "s_register_operand" "w")] VQSHL))] "TARGET_NEON" "v.%#\t%0, %1, %2" [(set_attr "type" "neon_sat_shift_imm")] ) ;; vshr_n, vrshr_n (define_insn "neon_v_n" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VSHR_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 1, neon_element_bits (mode) + 1); return "v.%#\t%0, %1, %2"; } [(set_attr "type" "neon_shift_imm")] ) ;; vshrn_n, vrshrn_n (define_insn "neon_v_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VSHRN_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 1, neon_element_bits (mode) / 2 + 1); return "v.\t%P0, %q1, %2"; } [(set_attr "type" "neon_shift_imm_narrow_q")] ) ;; vqshrn_n, vqrshrn_n (define_insn "neon_v_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VQSHRN_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 1, neon_element_bits (mode) / 2 + 1); return "v.%#\t%P0, %q1, %2"; } [(set_attr "type" "neon_sat_shift_imm_narrow_q")] ) ;; vqshrun_n, vqrshrun_n (define_insn "neon_v_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VN 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VQSHRUN_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 1, neon_element_bits (mode) / 2 + 1); return "v.\t%P0, %q1, %2"; } [(set_attr "type" "neon_sat_shift_imm_narrow_q")] ) (define_insn "neon_vshl_n" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] UNSPEC_VSHL_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 0, neon_element_bits (mode)); return "vshl.\t%0, %1, %2"; } [(set_attr "type" "neon_shift_imm")] ) (define_insn "neon_vqshl__n" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VQSHL_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 0, neon_element_bits (mode)); return "vqshl.%#\t%0, %1, %2"; } [(set_attr "type" "neon_sat_shift_imm")] ) (define_insn "neon_vqshlu_n" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] UNSPEC_VQSHLU_N))] "TARGET_NEON" { arm_const_bounds (operands[2], 0, neon_element_bits (mode)); return "vqshlu.\t%0, %1, %2"; } [(set_attr "type" "neon_sat_shift_imm")] ) (define_insn "neon_vshll_n" [(set (match_operand: 0 "s_register_operand" "=w") (unspec: [(match_operand:VW 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] VSHLL_N))] "TARGET_NEON" { /* The boundaries are: 0 < imm <= size. */ arm_const_bounds (operands[2], 0, neon_element_bits (mode) + 1); return "vshll.%#\t%q0, %P1, %2"; } [(set_attr "type" "neon_shift_imm_long")] ) ;; vsra_n, vrsra_n (define_insn "neon_v_n" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "0") (match_operand:VDQIX 2 "s_register_operand" "w") (match_operand:SI 3 "immediate_operand" "i")] VSRA_N))] "TARGET_NEON" { arm_const_bounds (operands[3], 1, neon_element_bits (mode) + 1); return "v.%#\t%0, %2, %3"; } [(set_attr "type" "neon_shift_acc")] ) (define_insn "neon_vsri_n" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "0") (match_operand:VDQIX 2 "s_register_operand" "w") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VSRI))] "TARGET_NEON" { arm_const_bounds (operands[3], 1, neon_element_bits (mode) + 1); return "vsri.\t%0, %2, %3"; } [(set_attr "type" "neon_shift_reg")] ) (define_insn "neon_vsli_n" [(set (match_operand:VDQIX 0 "s_register_operand" "=w") (unspec:VDQIX [(match_operand:VDQIX 1 "s_register_operand" "0") (match_operand:VDQIX 2 "s_register_operand" "w") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VSLI))] "TARGET_NEON" { arm_const_bounds (operands[3], 0, neon_element_bits (mode)); return "vsli.\t%0, %2, %3"; } [(set_attr "type" "neon_shift_reg")] ) (define_insn "neon_vtbl1v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:V8QI 1 "s_register_operand" "w") (match_operand:V8QI 2 "s_register_operand" "w")] UNSPEC_VTBL))] "TARGET_NEON" "vtbl.8\t%P0, {%P1}, %P2" [(set_attr "type" "neon_tbl1")] ) (define_insn "neon_vtbl2v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:TI 1 "s_register_operand" "w") (match_operand:V8QI 2 "s_register_operand" "w")] UNSPEC_VTBL))] "TARGET_NEON" { rtx ops[4]; int tabbase = REGNO (operands[1]); ops[0] = operands[0]; ops[1] = gen_rtx_REG (V8QImode, tabbase); ops[2] = gen_rtx_REG (V8QImode, tabbase + 2); ops[3] = operands[2]; output_asm_insn ("vtbl.8\t%P0, {%P1, %P2}, %P3", ops); return ""; } [(set_attr "type" "neon_tbl2")] ) (define_insn "neon_vtbl3v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:EI 1 "s_register_operand" "w") (match_operand:V8QI 2 "s_register_operand" "w")] UNSPEC_VTBL))] "TARGET_NEON" { rtx ops[5]; int tabbase = REGNO (operands[1]); ops[0] = operands[0]; ops[1] = gen_rtx_REG (V8QImode, tabbase); ops[2] = gen_rtx_REG (V8QImode, tabbase + 2); ops[3] = gen_rtx_REG (V8QImode, tabbase + 4); ops[4] = operands[2]; output_asm_insn ("vtbl.8\t%P0, {%P1, %P2, %P3}, %P4", ops); return ""; } [(set_attr "type" "neon_tbl3")] ) (define_insn "neon_vtbl4v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:OI 1 "s_register_operand" "w") (match_operand:V8QI 2 "s_register_operand" "w")] UNSPEC_VTBL))] "TARGET_NEON" { rtx ops[6]; int tabbase = REGNO (operands[1]); ops[0] = operands[0]; ops[1] = gen_rtx_REG (V8QImode, tabbase); ops[2] = gen_rtx_REG (V8QImode, tabbase + 2); ops[3] = gen_rtx_REG (V8QImode, tabbase + 4); ops[4] = gen_rtx_REG (V8QImode, tabbase + 6); ops[5] = operands[2]; output_asm_insn ("vtbl.8\t%P0, {%P1, %P2, %P3, %P4}, %P5", ops); return ""; } [(set_attr "type" "neon_tbl4")] ) ;; These three are used by the vec_perm infrastructure for V16QImode. (define_insn_and_split "neon_vtbl1v16qi" [(set (match_operand:V16QI 0 "s_register_operand" "=&w") (unspec:V16QI [(match_operand:V16QI 1 "s_register_operand" "w") (match_operand:V16QI 2 "s_register_operand" "w")] UNSPEC_VTBL))] "TARGET_NEON" "#" "&& reload_completed" [(const_int 0)] { rtx op0, op1, op2, part0, part2; unsigned ofs; op0 = operands[0]; op1 = gen_lowpart (TImode, operands[1]); op2 = operands[2]; ofs = subreg_lowpart_offset (V8QImode, V16QImode); part0 = simplify_subreg (V8QImode, op0, V16QImode, ofs); part2 = simplify_subreg (V8QImode, op2, V16QImode, ofs); emit_insn (gen_neon_vtbl2v8qi (part0, op1, part2)); ofs = subreg_highpart_offset (V8QImode, V16QImode); part0 = simplify_subreg (V8QImode, op0, V16QImode, ofs); part2 = simplify_subreg (V8QImode, op2, V16QImode, ofs); emit_insn (gen_neon_vtbl2v8qi (part0, op1, part2)); DONE; } [(set_attr "type" "multiple")] ) (define_insn_and_split "neon_vtbl2v16qi" [(set (match_operand:V16QI 0 "s_register_operand" "=&w") (unspec:V16QI [(match_operand:OI 1 "s_register_operand" "w") (match_operand:V16QI 2 "s_register_operand" "w")] UNSPEC_VTBL))] "TARGET_NEON" "#" "&& reload_completed" [(const_int 0)] { rtx op0, op1, op2, part0, part2; unsigned ofs; op0 = operands[0]; op1 = operands[1]; op2 = operands[2]; ofs = subreg_lowpart_offset (V8QImode, V16QImode); part0 = simplify_subreg (V8QImode, op0, V16QImode, ofs); part2 = simplify_subreg (V8QImode, op2, V16QImode, ofs); emit_insn (gen_neon_vtbl2v8qi (part0, op1, part2)); ofs = subreg_highpart_offset (V8QImode, V16QImode); part0 = simplify_subreg (V8QImode, op0, V16QImode, ofs); part2 = simplify_subreg (V8QImode, op2, V16QImode, ofs); emit_insn (gen_neon_vtbl2v8qi (part0, op1, part2)); DONE; } [(set_attr "type" "multiple")] ) ;; ??? Logically we should extend the regular neon_vcombine pattern to ;; handle quad-word input modes, producing octa-word output modes. But ;; that requires us to add support for octa-word vector modes in moves. ;; That seems overkill for this one use in vec_perm. (define_insn_and_split "neon_vcombinev16qi" [(set (match_operand:OI 0 "s_register_operand" "=w") (unspec:OI [(match_operand:V16QI 1 "s_register_operand" "w") (match_operand:V16QI 2 "s_register_operand" "w")] UNSPEC_VCONCAT))] "TARGET_NEON" "#" "&& reload_completed" [(const_int 0)] { neon_split_vcombine (operands); DONE; } [(set_attr "type" "multiple")] ) (define_insn "neon_vtbx1v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:V8QI 1 "s_register_operand" "0") (match_operand:V8QI 2 "s_register_operand" "w") (match_operand:V8QI 3 "s_register_operand" "w")] UNSPEC_VTBX))] "TARGET_NEON" "vtbx.8\t%P0, {%P2}, %P3" [(set_attr "type" "neon_tbl1")] ) (define_insn "neon_vtbx2v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:V8QI 1 "s_register_operand" "0") (match_operand:TI 2 "s_register_operand" "w") (match_operand:V8QI 3 "s_register_operand" "w")] UNSPEC_VTBX))] "TARGET_NEON" { rtx ops[4]; int tabbase = REGNO (operands[2]); ops[0] = operands[0]; ops[1] = gen_rtx_REG (V8QImode, tabbase); ops[2] = gen_rtx_REG (V8QImode, tabbase + 2); ops[3] = operands[3]; output_asm_insn ("vtbx.8\t%P0, {%P1, %P2}, %P3", ops); return ""; } [(set_attr "type" "neon_tbl2")] ) (define_insn "neon_vtbx3v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:V8QI 1 "s_register_operand" "0") (match_operand:EI 2 "s_register_operand" "w") (match_operand:V8QI 3 "s_register_operand" "w")] UNSPEC_VTBX))] "TARGET_NEON" { rtx ops[5]; int tabbase = REGNO (operands[2]); ops[0] = operands[0]; ops[1] = gen_rtx_REG (V8QImode, tabbase); ops[2] = gen_rtx_REG (V8QImode, tabbase + 2); ops[3] = gen_rtx_REG (V8QImode, tabbase + 4); ops[4] = operands[3]; output_asm_insn ("vtbx.8\t%P0, {%P1, %P2, %P3}, %P4", ops); return ""; } [(set_attr "type" "neon_tbl3")] ) (define_insn "neon_vtbx4v8qi" [(set (match_operand:V8QI 0 "s_register_operand" "=w") (unspec:V8QI [(match_operand:V8QI 1 "s_register_operand" "0") (match_operand:OI 2 "s_register_operand" "w") (match_operand:V8QI 3 "s_register_operand" "w")] UNSPEC_VTBX))] "TARGET_NEON" { rtx ops[6]; int tabbase = REGNO (operands[2]); ops[0] = operands[0]; ops[1] = gen_rtx_REG (V8QImode, tabbase); ops[2] = gen_rtx_REG (V8QImode, tabbase + 2); ops[3] = gen_rtx_REG (V8QImode, tabbase + 4); ops[4] = gen_rtx_REG (V8QImode, tabbase + 6); ops[5] = operands[3]; output_asm_insn ("vtbx.8\t%P0, {%P1, %P2, %P3, %P4}, %P5", ops); return ""; } [(set_attr "type" "neon_tbl4")] ) (define_expand "@neon_vtrn_internal" [(parallel [(set (match_operand:VDQWH 0 "s_register_operand") (unspec:VDQWH [(match_operand:VDQWH 1 "s_register_operand") (match_operand:VDQWH 2 "s_register_operand")] UNSPEC_VTRN1)) (set (match_operand:VDQWH 3 "s_register_operand") (unspec:VDQWH [(match_dup 1) (match_dup 2)] UNSPEC_VTRN2))])] "TARGET_NEON" "" ) ;; Note: Different operand numbering to handle tied registers correctly. (define_insn "*neon_vtrn_insn" [(set (match_operand:VDQWH 0 "s_register_operand" "=&w") (unspec:VDQWH [(match_operand:VDQWH 1 "s_register_operand" "0") (match_operand:VDQWH 3 "s_register_operand" "2")] UNSPEC_VTRN1)) (set (match_operand:VDQWH 2 "s_register_operand" "=&w") (unspec:VDQWH [(match_dup 1) (match_dup 3)] UNSPEC_VTRN2))] "TARGET_NEON" "vtrn.\t%0, %2" [(set_attr "type" "neon_permute")] ) (define_expand "@neon_vzip_internal" [(parallel [(set (match_operand:VDQWH 0 "s_register_operand") (unspec:VDQWH [(match_operand:VDQWH 1 "s_register_operand") (match_operand:VDQWH 2 "s_register_operand")] UNSPEC_VZIP1)) (set (match_operand:VDQWH 3 "s_register_operand") (unspec:VDQWH [(match_dup 1) (match_dup 2)] UNSPEC_VZIP2))])] "TARGET_NEON" "" ) ;; Note: Different operand numbering to handle tied registers correctly. (define_insn "*neon_vzip_insn" [(set (match_operand:VDQWH 0 "s_register_operand" "=&w") (unspec:VDQWH [(match_operand:VDQWH 1 "s_register_operand" "0") (match_operand:VDQWH 3 "s_register_operand" "2")] UNSPEC_VZIP1)) (set (match_operand:VDQWH 2 "s_register_operand" "=&w") (unspec:VDQWH [(match_dup 1) (match_dup 3)] UNSPEC_VZIP2))] "TARGET_NEON" "vzip.\t%0, %2" [(set_attr "type" "neon_zip")] ) (define_expand "@neon_vuzp_internal" [(parallel [(set (match_operand:VDQWH 0 "s_register_operand") (unspec:VDQWH [(match_operand:VDQWH 1 "s_register_operand") (match_operand:VDQWH 2 "s_register_operand")] UNSPEC_VUZP1)) (set (match_operand:VDQWH 3 "s_register_operand") (unspec:VDQWH [(match_dup 1) (match_dup 2)] UNSPEC_VUZP2))])] "TARGET_NEON" "" ) ;; Note: Different operand numbering to handle tied registers correctly. (define_insn "*neon_vuzp_insn" [(set (match_operand:VDQWH 0 "s_register_operand" "=&w") (unspec:VDQWH [(match_operand:VDQWH 1 "s_register_operand" "0") (match_operand:VDQWH 3 "s_register_operand" "2")] UNSPEC_VUZP1)) (set (match_operand:VDQWH 2 "s_register_operand" "=&w") (unspec:VDQWH [(match_dup 1) (match_dup 3)] UNSPEC_VUZP2))] "TARGET_NEON" "vuzp.\t%0, %2" [(set_attr "type" "neon_zip")] ) (define_expand "vec_load_lanes" [(set (match_operand:VDQX 0 "s_register_operand") (unspec:VDQX [(match_operand:VDQX 1 "neon_struct_operand")] UNSPEC_VLD1))] "TARGET_NEON") (define_insn "neon_vld1" [(set (match_operand:VDQX 0 "s_register_operand" "=w") (unspec:VDQX [(match_operand:VDQX 1 "neon_struct_operand" "Um")] UNSPEC_VLD1))] "TARGET_NEON" "vld1.\t%h0, %A1" [(set_attr "type" "neon_load1_1reg")] ) ;; The lane numbers in the RTL are in GCC lane order, having been flipped ;; in arm_expand_neon_args. The lane numbers are restored to architectural ;; lane order here. (define_insn "neon_vld1_lane" [(set (match_operand:VDX 0 "s_register_operand" "=w") (unspec:VDX [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:VDX 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VLD1_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[3])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); operands[3] = GEN_INT (lane); if (max == 1) return "vld1.\t%P0, %A1"; else return "vld1.\t{%P0[%c3]}, %A1"; } [(set_attr "type" "neon_load1_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vld1_lane" [(set (match_operand:VQX 0 "s_register_operand" "=w") (unspec:VQX [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:VQX 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i")] UNSPEC_VLD1_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[3])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); operands[3] = GEN_INT (lane); int regno = REGNO (operands[0]); if (lane >= max / 2) { lane -= max / 2; regno += 2; operands[3] = GEN_INT (lane); } operands[0] = gen_rtx_REG (mode, regno); if (max == 2) return "vld1.\t%P0, %A1"; else return "vld1.\t{%P0[%c3]}, %A1"; } [(set_attr "type" "neon_load1_one_lane")] ) (define_insn "neon_vld1_dup" [(set (match_operand:VD_LANE 0 "s_register_operand" "=w") (vec_duplicate:VD_LANE (match_operand: 1 "neon_struct_operand" "Um")))] "TARGET_NEON" "vld1.\t{%P0[]}, %A1" [(set_attr "type" "neon_load1_all_lanes")] ) ;; Special case for DImode. Treat it exactly like a simple load. (define_expand "neon_vld1_dupdi" [(set (match_operand:DI 0 "s_register_operand") (unspec:DI [(match_operand:DI 1 "neon_struct_operand")] UNSPEC_VLD1))] "TARGET_NEON" "" ) (define_insn "neon_vld1_dup" [(set (match_operand:VQ2 0 "s_register_operand" "=w") (vec_duplicate:VQ2 (match_operand: 1 "neon_struct_operand" "Um")))] "TARGET_NEON" { return "vld1.\t{%e0[], %f0[]}, %A1"; } [(set_attr "type" "neon_load1_all_lanes")] ) (define_insn_and_split "neon_vld1_dupv2di" [(set (match_operand:V2DI 0 "s_register_operand" "=w") (vec_duplicate:V2DI (match_operand:DI 1 "neon_struct_operand" "Um")))] "TARGET_NEON" "#" "&& reload_completed" [(const_int 0)] { rtx tmprtx = gen_lowpart (DImode, operands[0]); emit_insn (gen_neon_vld1_dupdi (tmprtx, operands[1])); emit_move_insn (gen_highpart (DImode, operands[0]), tmprtx ); DONE; } [(set_attr "length" "8") (set_attr "type" "neon_load1_all_lanes_q")] ) (define_expand "vec_store_lanes" [(set (match_operand:VDQX 0 "neon_struct_operand") (unspec:VDQX [(match_operand:VDQX 1 "s_register_operand")] UNSPEC_VST1))] "TARGET_NEON") (define_insn "neon_vst1" [(set (match_operand:VDQX 0 "neon_struct_operand" "=Um") (unspec:VDQX [(match_operand:VDQX 1 "s_register_operand" "w")] UNSPEC_VST1))] "TARGET_NEON" "vst1.\t%h1, %A0" [(set_attr "type" "neon_store1_1reg")]) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst1_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:VDX 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] UNSPEC_VST1_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); operands[2] = GEN_INT (lane); if (max == 1) return "vst1.\t{%P1}, %A0"; else return "vst1.\t{%P1[%c2]}, %A0"; } [(set_attr "type" "neon_store1_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst1_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:VQX 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i")] UNSPEC_VST1_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); int regno = REGNO (operands[1]); if (lane >= max / 2) { lane -= max / 2; regno += 2; } operands[2] = GEN_INT (lane); operands[1] = gen_rtx_REG (mode, regno); if (max == 2) return "vst1.\t{%P1}, %A0"; else return "vst1.\t{%P1[%c2]}, %A0"; } [(set_attr "type" "neon_store1_one_lane")] ) (define_expand "vec_load_lanesti" [(set (match_operand:TI 0 "s_register_operand") (unspec:TI [(match_operand:TI 1 "neon_struct_operand") (unspec:VDX [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2))] "TARGET_NEON") (define_insn "neon_vld2" [(set (match_operand:TI 0 "s_register_operand" "=w") (unspec:TI [(match_operand:TI 1 "neon_struct_operand" "Um") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2))] "TARGET_NEON" { if ( == 64) return "vld1.64\t%h0, %A1"; else return "vld2.\t%h0, %A1"; } [(set (attr "type") (if_then_else (eq (const_string "") (const_string "64")) (const_string "neon_load1_2reg") (const_string "neon_load2_2reg")))] ) (define_expand "vec_load_lanesoi" [(set (match_operand:OI 0 "s_register_operand") (unspec:OI [(match_operand:OI 1 "neon_struct_operand") (unspec:VQ2 [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2))] "TARGET_NEON") (define_insn "neon_vld2" [(set (match_operand:OI 0 "s_register_operand" "=w") (unspec:OI [(match_operand:OI 1 "neon_struct_operand" "Um") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2))] "TARGET_NEON" "vld2.\t%h0, %A1" [(set_attr "type" "neon_load2_2reg_q")]) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vld2_lane" [(set (match_operand:TI 0 "s_register_operand" "=w") (unspec:TI [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:TI 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i") (unspec:VD_LANE [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[3])); int regno = REGNO (operands[0]); rtx ops[4]; ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 2); ops[2] = operands[1]; ops[3] = GEN_INT (lane); output_asm_insn ("vld2.\t{%P0[%c3], %P1[%c3]}, %A2", ops); return ""; } [(set_attr "type" "neon_load2_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vld2_lane" [(set (match_operand:OI 0 "s_register_operand" "=w") (unspec:OI [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:OI 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i") (unspec:VQ_HS [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[3])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); int regno = REGNO (operands[0]); rtx ops[4]; if (lane >= max / 2) { lane -= max / 2; regno += 2; } ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 4); ops[2] = operands[1]; ops[3] = GEN_INT (lane); output_asm_insn ("vld2.\t{%P0[%c3], %P1[%c3]}, %A2", ops); return ""; } [(set_attr "type" "neon_load2_one_lane")] ) (define_insn "neon_vld2_dup" [(set (match_operand:TI 0 "s_register_operand" "=w") (unspec:TI [(match_operand: 1 "neon_struct_operand" "Um") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2_DUP))] "TARGET_NEON" { if (GET_MODE_NUNITS (mode) > 1) return "vld2.\t{%e0[], %f0[]}, %A1"; else return "vld1.\t%h0, %A1"; } [(set (attr "type") (if_then_else (gt (const_string "") (const_string "1")) (const_string "neon_load2_all_lanes") (const_string "neon_load1_1reg")))] ) (define_insn "neon_vld2_dupv8bf" [(set (match_operand:OI 0 "s_register_operand" "=w") (unspec:OI [(match_operand:V2BF 1 "neon_struct_operand" "Um") (unspec:V8BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2_DUP))] "TARGET_BF16_SIMD" { rtx ops[5]; int tabbase = REGNO (operands[0]); ops[4] = operands[1]; ops[0] = gen_rtx_REG (V4BFmode, tabbase); ops[1] = gen_rtx_REG (V4BFmode, tabbase + 2); ops[2] = gen_rtx_REG (V4BFmode, tabbase + 4); ops[3] = gen_rtx_REG (V4BFmode, tabbase + 6); output_asm_insn ("vld2.16\t{%P0, %P1, %P2, %P3}, %A4", ops); return ""; } [(set_attr "type" "neon_load2_all_lanes_q")] ) (define_expand "vec_store_lanesti" [(set (match_operand:TI 0 "neon_struct_operand") (unspec:TI [(match_operand:TI 1 "s_register_operand") (unspec:VDX [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST2))] "TARGET_NEON") (define_insn "neon_vst2" [(set (match_operand:TI 0 "neon_struct_operand" "=Um") (unspec:TI [(match_operand:TI 1 "s_register_operand" "w") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST2))] "TARGET_NEON" { if ( == 64) return "vst1.64\t%h1, %A0"; else return "vst2.\t%h1, %A0"; } [(set (attr "type") (if_then_else (eq (const_string "") (const_string "64")) (const_string "neon_store1_2reg") (const_string "neon_store2_one_lane")))] ) (define_expand "vec_store_lanesoi" [(set (match_operand:OI 0 "neon_struct_operand") (unspec:OI [(match_operand:OI 1 "s_register_operand") (unspec:VQ2 [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST2))] "TARGET_NEON") (define_insn "neon_vst2" [(set (match_operand:OI 0 "neon_struct_operand" "=Um") (unspec:OI [(match_operand:OI 1 "s_register_operand" "w") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST2))] "TARGET_NEON" "vst2.\t%h1, %A0" [(set_attr "type" "neon_store2_4reg")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst2_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:TI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i") (unspec:VD_LANE [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST2_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); int regno = REGNO (operands[1]); rtx ops[4]; ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 2); ops[3] = GEN_INT (lane); output_asm_insn ("vst2.\t{%P1[%c3], %P2[%c3]}, %A0", ops); return ""; } [(set_attr "type" "neon_store2_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst2_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:OI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i") (unspec:VQ_HS [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST2_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); int regno = REGNO (operands[1]); rtx ops[4]; if (lane >= max / 2) { lane -= max / 2; regno += 2; } ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = GEN_INT (lane); output_asm_insn ("vst2.\t{%P1[%c3], %P2[%c3]}, %A0", ops); return ""; } [(set_attr "type" "neon_store2_one_lane")] ) (define_expand "vec_load_lanesei" [(set (match_operand:EI 0 "s_register_operand") (unspec:EI [(match_operand:EI 1 "neon_struct_operand") (unspec:VDX [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD3))] "TARGET_NEON") (define_insn "neon_vld3" [(set (match_operand:EI 0 "s_register_operand" "=w") (unspec:EI [(match_operand:EI 1 "neon_struct_operand" "Um") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD3))] "TARGET_NEON" { if ( == 64) return "vld1.64\t%h0, %A1"; else return "vld3.\t%h0, %A1"; } [(set (attr "type") (if_then_else (eq (const_string "") (const_string "64")) (const_string "neon_load1_3reg") (const_string "neon_load3_3reg")))] ) (define_expand "vec_load_lanesci" [(match_operand:CI 0 "s_register_operand") (match_operand:CI 1 "neon_struct_operand") (unspec:VQ2 [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { emit_insn (gen_neon_vld3 (operands[0], operands[1])); DONE; }) (define_expand "neon_vld3" [(match_operand:CI 0 "s_register_operand") (match_operand:CI 1 "neon_struct_operand") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { rtx mem; mem = adjust_address (operands[1], EImode, 0); emit_insn (gen_neon_vld3qa (operands[0], mem)); mem = adjust_address (mem, EImode, GET_MODE_SIZE (EImode)); emit_insn (gen_neon_vld3qb (operands[0], mem, operands[0])); DONE; }) (define_insn "neon_vld3qa" [(set (match_operand:CI 0 "s_register_operand" "=w") (unspec:CI [(match_operand:EI 1 "neon_struct_operand" "Um") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD3A))] "TARGET_NEON" { int regno = REGNO (operands[0]); rtx ops[4]; ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 4); ops[2] = gen_rtx_REG (DImode, regno + 8); ops[3] = operands[1]; output_asm_insn ("vld3.\t{%P0, %P1, %P2}, %A3", ops); return ""; } [(set_attr "type" "neon_load3_3reg")] ) (define_insn "neon_vld3qb" [(set (match_operand:CI 0 "s_register_operand" "=w") (unspec:CI [(match_operand:EI 1 "neon_struct_operand" "Um") (match_operand:CI 2 "s_register_operand" "0") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD3B))] "TARGET_NEON" { int regno = REGNO (operands[0]); rtx ops[4]; ops[0] = gen_rtx_REG (DImode, regno + 2); ops[1] = gen_rtx_REG (DImode, regno + 6); ops[2] = gen_rtx_REG (DImode, regno + 10); ops[3] = operands[1]; output_asm_insn ("vld3.\t{%P0, %P1, %P2}, %A3", ops); return ""; } [(set_attr "type" "neon_load3_3reg")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vld3_lane" [(set (match_operand:EI 0 "s_register_operand" "=w") (unspec:EI [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:EI 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i") (unspec:VD_LANE [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD3_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N (mode, INTVAL (operands[3])); int regno = REGNO (operands[0]); rtx ops[5]; ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 2); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = operands[1]; ops[4] = GEN_INT (lane); output_asm_insn ("vld3.\t{%P0[%c4], %P1[%c4], %P2[%c4]}, %3", ops); return ""; } [(set_attr "type" "neon_load3_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vld3_lane" [(set (match_operand:CI 0 "s_register_operand" "=w") (unspec:CI [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:CI 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i") (unspec:VQ_HS [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD3_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[3])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); int regno = REGNO (operands[0]); rtx ops[5]; if (lane >= max / 2) { lane -= max / 2; regno += 2; } ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 4); ops[2] = gen_rtx_REG (DImode, regno + 8); ops[3] = operands[1]; ops[4] = GEN_INT (lane); output_asm_insn ("vld3.\t{%P0[%c4], %P1[%c4], %P2[%c4]}, %3", ops); return ""; } [(set_attr "type" "neon_load3_one_lane")] ) (define_insn "neon_vld3_dup" [(set (match_operand:EI 0 "s_register_operand" "=w") (unspec:EI [(match_operand: 1 "neon_struct_operand" "Um") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD3_DUP))] "TARGET_NEON" { if (GET_MODE_NUNITS (mode) > 1) { int regno = REGNO (operands[0]); rtx ops[4]; ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 2); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = operands[1]; output_asm_insn ("vld3.\t{%P0[], %P1[], %P2[]}, %3", ops); return ""; } else return "vld1.\t%h0, %A1"; } [(set (attr "type") (if_then_else (gt (const_string "") (const_string "1")) (const_string "neon_load3_all_lanes") (const_string "neon_load1_1reg")))]) (define_insn "neon_vld3_dupv8bf" [(set (match_operand:CI 0 "s_register_operand" "=w") (unspec:CI [(match_operand:V2BF 1 "neon_struct_operand" "Um") (unspec:V8BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2_DUP))] "TARGET_BF16_SIMD" { rtx ops[4]; int tabbase = REGNO (operands[0]); ops[3] = operands[1]; ops[0] = gen_rtx_REG (V4BFmode, tabbase); ops[1] = gen_rtx_REG (V4BFmode, tabbase + 2); ops[2] = gen_rtx_REG (V4BFmode, tabbase + 4); output_asm_insn ("vld3.16\t{%P0[], %P1[], %P2[]}, %A3", ops); return ""; } [(set_attr "type" "neon_load3_all_lanes_q")] ) (define_expand "vec_store_lanesei" [(set (match_operand:EI 0 "neon_struct_operand") (unspec:EI [(match_operand:EI 1 "s_register_operand") (unspec:VDX [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST3))] "TARGET_NEON") (define_insn "neon_vst3" [(set (match_operand:EI 0 "neon_struct_operand" "=Um") (unspec:EI [(match_operand:EI 1 "s_register_operand" "w") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST3))] "TARGET_NEON" { if ( == 64) return "vst1.64\t%h1, %A0"; else return "vst3.\t%h1, %A0"; } [(set (attr "type") (if_then_else (eq (const_string "") (const_string "64")) (const_string "neon_store1_3reg") (const_string "neon_store3_one_lane")))]) (define_expand "vec_store_lanesci" [(match_operand:CI 0 "neon_struct_operand") (match_operand:CI 1 "s_register_operand") (unspec:VQ2 [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { emit_insn (gen_neon_vst3 (operands[0], operands[1])); DONE; }) (define_expand "neon_vst3" [(match_operand:CI 0 "neon_struct_operand") (match_operand:CI 1 "s_register_operand") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { rtx mem; mem = adjust_address (operands[0], EImode, 0); emit_insn (gen_neon_vst3qa (mem, operands[1])); mem = adjust_address (mem, EImode, GET_MODE_SIZE (EImode)); emit_insn (gen_neon_vst3qb (mem, operands[1])); DONE; }) (define_insn "neon_vst3qa" [(set (match_operand:EI 0 "neon_struct_operand" "=Um") (unspec:EI [(match_operand:CI 1 "s_register_operand" "w") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST3A))] "TARGET_NEON" { int regno = REGNO (operands[1]); rtx ops[4]; ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = gen_rtx_REG (DImode, regno + 8); output_asm_insn ("vst3.\t{%P1, %P2, %P3}, %A0", ops); return ""; } [(set_attr "type" "neon_store3_3reg")] ) (define_insn "neon_vst3qb" [(set (match_operand:EI 0 "neon_struct_operand" "=Um") (unspec:EI [(match_operand:CI 1 "s_register_operand" "w") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST3B))] "TARGET_NEON" { int regno = REGNO (operands[1]); rtx ops[4]; ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno + 2); ops[2] = gen_rtx_REG (DImode, regno + 6); ops[3] = gen_rtx_REG (DImode, regno + 10); output_asm_insn ("vst3.\t{%P1, %P2, %P3}, %A0", ops); return ""; } [(set_attr "type" "neon_store3_3reg")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst3_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:EI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i") (unspec:VD_LANE [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST3_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); int regno = REGNO (operands[1]); rtx ops[5]; ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 2); ops[3] = gen_rtx_REG (DImode, regno + 4); ops[4] = GEN_INT (lane); output_asm_insn ("vst3.\t{%P1[%c4], %P2[%c4], %P3[%c4]}, %0", ops); return ""; } [(set_attr "type" "neon_store3_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst3_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:CI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i") (unspec:VQ_HS [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST3_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); int regno = REGNO (operands[1]); rtx ops[5]; if (lane >= max / 2) { lane -= max / 2; regno += 2; } ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = gen_rtx_REG (DImode, regno + 8); ops[4] = GEN_INT (lane); output_asm_insn ("vst3.\t{%P1[%c4], %P2[%c4], %P3[%c4]}, %0", ops); return ""; } [(set_attr "type" "neon_store3_one_lane")] ) (define_expand "vec_load_lanesoi" [(set (match_operand:OI 0 "s_register_operand") (unspec:OI [(match_operand:OI 1 "neon_struct_operand") (unspec:VDX [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD4))] "TARGET_NEON") (define_insn "neon_vld4" [(set (match_operand:OI 0 "s_register_operand" "=w") (unspec:OI [(match_operand:OI 1 "neon_struct_operand" "Um") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD4))] "TARGET_NEON" { if ( == 64) return "vld1.64\t%h0, %A1"; else return "vld4.\t%h0, %A1"; } [(set (attr "type") (if_then_else (eq (const_string "") (const_string "64")) (const_string "neon_load1_4reg") (const_string "neon_load4_4reg")))] ) (define_expand "vec_load_lanesxi" [(match_operand:XI 0 "s_register_operand") (match_operand:XI 1 "neon_struct_operand") (unspec:VQ2 [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { emit_insn (gen_neon_vld4 (operands[0], operands[1])); DONE; }) (define_expand "neon_vld4" [(match_operand:XI 0 "s_register_operand") (match_operand:XI 1 "neon_struct_operand") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { rtx mem; mem = adjust_address (operands[1], OImode, 0); emit_insn (gen_neon_vld4qa (operands[0], mem)); mem = adjust_address (mem, OImode, GET_MODE_SIZE (OImode)); emit_insn (gen_neon_vld4qb (operands[0], mem, operands[0])); DONE; }) (define_insn "neon_vld4qa" [(set (match_operand:XI 0 "s_register_operand" "=w") (unspec:XI [(match_operand:OI 1 "neon_struct_operand" "Um") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD4A))] "TARGET_NEON" { int regno = REGNO (operands[0]); rtx ops[5]; ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 4); ops[2] = gen_rtx_REG (DImode, regno + 8); ops[3] = gen_rtx_REG (DImode, regno + 12); ops[4] = operands[1]; output_asm_insn ("vld4.\t{%P0, %P1, %P2, %P3}, %A4", ops); return ""; } [(set_attr "type" "neon_load4_4reg")] ) (define_insn "neon_vld4qb" [(set (match_operand:XI 0 "s_register_operand" "=w") (unspec:XI [(match_operand:OI 1 "neon_struct_operand" "Um") (match_operand:XI 2 "s_register_operand" "0") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD4B))] "TARGET_NEON" { int regno = REGNO (operands[0]); rtx ops[5]; ops[0] = gen_rtx_REG (DImode, regno + 2); ops[1] = gen_rtx_REG (DImode, regno + 6); ops[2] = gen_rtx_REG (DImode, regno + 10); ops[3] = gen_rtx_REG (DImode, regno + 14); ops[4] = operands[1]; output_asm_insn ("vld4.\t{%P0, %P1, %P2, %P3}, %A4", ops); return ""; } [(set_attr "type" "neon_load4_4reg")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vld4_lane" [(set (match_operand:OI 0 "s_register_operand" "=w") (unspec:OI [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:OI 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i") (unspec:VD_LANE [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD4_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[3])); int regno = REGNO (operands[0]); rtx ops[6]; ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 2); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = gen_rtx_REG (DImode, regno + 6); ops[4] = operands[1]; ops[5] = GEN_INT (lane); output_asm_insn ("vld4.\t{%P0[%c5], %P1[%c5], %P2[%c5], %P3[%c5]}, %A4", ops); return ""; } [(set_attr "type" "neon_load4_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vld4_lane" [(set (match_operand:XI 0 "s_register_operand" "=w") (unspec:XI [(match_operand: 1 "neon_struct_operand" "Um") (match_operand:XI 2 "s_register_operand" "0") (match_operand:SI 3 "immediate_operand" "i") (unspec:VQ_HS [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD4_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[3])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); int regno = REGNO (operands[0]); rtx ops[6]; if (lane >= max / 2) { lane -= max / 2; regno += 2; } ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 4); ops[2] = gen_rtx_REG (DImode, regno + 8); ops[3] = gen_rtx_REG (DImode, regno + 12); ops[4] = operands[1]; ops[5] = GEN_INT (lane); output_asm_insn ("vld4.\t{%P0[%c5], %P1[%c5], %P2[%c5], %P3[%c5]}, %A4", ops); return ""; } [(set_attr "type" "neon_load4_one_lane")] ) (define_insn "neon_vld4_dup" [(set (match_operand:OI 0 "s_register_operand" "=w") (unspec:OI [(match_operand: 1 "neon_struct_operand" "Um") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD4_DUP))] "TARGET_NEON" { if (GET_MODE_NUNITS (mode) > 1) { int regno = REGNO (operands[0]); rtx ops[5]; ops[0] = gen_rtx_REG (DImode, regno); ops[1] = gen_rtx_REG (DImode, regno + 2); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = gen_rtx_REG (DImode, regno + 6); ops[4] = operands[1]; output_asm_insn ("vld4.\t{%P0[], %P1[], %P2[], %P3[]}, %A4", ops); return ""; } else return "vld1.\t%h0, %A1"; } [(set (attr "type") (if_then_else (gt (const_string "") (const_string "1")) (const_string "neon_load4_all_lanes") (const_string "neon_load1_1reg")))] ) (define_insn "neon_vld4_dupv8bf" [(set (match_operand:XI 0 "s_register_operand" "=w") (unspec:XI [(match_operand:V2BF 1 "neon_struct_operand" "Um") (unspec:V8BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VLD2_DUP))] "TARGET_BF16_SIMD" { rtx ops[5]; int tabbase = REGNO (operands[0]); ops[4] = operands[1]; ops[0] = gen_rtx_REG (V4BFmode, tabbase); ops[1] = gen_rtx_REG (V4BFmode, tabbase + 2); ops[2] = gen_rtx_REG (V4BFmode, tabbase + 4); ops[3] = gen_rtx_REG (V4BFmode, tabbase + 6); output_asm_insn ("vld4.16\t{%P0[], %P1[], %P2[], %P3[]}, %A4", ops); return ""; } [(set_attr "type" "neon_load4_all_lanes_q")] ) (define_expand "vec_store_lanesoi" [(set (match_operand:OI 0 "neon_struct_operand") (unspec:OI [(match_operand:OI 1 "s_register_operand") (unspec:VDX [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST4))] "TARGET_NEON") (define_insn "neon_vst4" [(set (match_operand:OI 0 "neon_struct_operand" "=Um") (unspec:OI [(match_operand:OI 1 "s_register_operand" "w") (unspec:VDXBF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST4))] "TARGET_NEON" { if ( == 64) return "vst1.64\t%h1, %A0"; else return "vst4.\t%h1, %A0"; } [(set (attr "type") (if_then_else (eq (const_string "") (const_string "64")) (const_string "neon_store1_4reg") (const_string "neon_store4_4reg")))] ) (define_expand "vec_store_lanesxi" [(match_operand:XI 0 "neon_struct_operand") (match_operand:XI 1 "s_register_operand") (unspec:VQ2 [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { emit_insn (gen_neon_vst4 (operands[0], operands[1])); DONE; }) (define_expand "neon_vst4" [(match_operand:XI 0 "neon_struct_operand") (match_operand:XI 1 "s_register_operand") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] "TARGET_NEON" { rtx mem; mem = adjust_address (operands[0], OImode, 0); emit_insn (gen_neon_vst4qa (mem, operands[1])); mem = adjust_address (mem, OImode, GET_MODE_SIZE (OImode)); emit_insn (gen_neon_vst4qb (mem, operands[1])); DONE; }) (define_insn "neon_vst4qa" [(set (match_operand:OI 0 "neon_struct_operand" "=Um") (unspec:OI [(match_operand:XI 1 "s_register_operand" "w") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST4A))] "TARGET_NEON" { int regno = REGNO (operands[1]); rtx ops[5]; ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = gen_rtx_REG (DImode, regno + 8); ops[4] = gen_rtx_REG (DImode, regno + 12); output_asm_insn ("vst4.\t{%P1, %P2, %P3, %P4}, %A0", ops); return ""; } [(set_attr "type" "neon_store4_4reg")] ) (define_insn "neon_vst4qb" [(set (match_operand:OI 0 "neon_struct_operand" "=Um") (unspec:OI [(match_operand:XI 1 "s_register_operand" "w") (unspec:VQ2BF [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST4B))] "TARGET_NEON" { int regno = REGNO (operands[1]); rtx ops[5]; ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno + 2); ops[2] = gen_rtx_REG (DImode, regno + 6); ops[3] = gen_rtx_REG (DImode, regno + 10); ops[4] = gen_rtx_REG (DImode, regno + 14); output_asm_insn ("vst4.\t{%P1, %P2, %P3, %P4}, %A0", ops); return ""; } [(set_attr "type" "neon_store4_4reg")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst4_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:OI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i") (unspec:VD_LANE [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST4_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); int regno = REGNO (operands[1]); rtx ops[6]; ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 2); ops[3] = gen_rtx_REG (DImode, regno + 4); ops[4] = gen_rtx_REG (DImode, regno + 6); ops[5] = GEN_INT (lane); output_asm_insn ("vst4.\t{%P1[%c5], %P2[%c5], %P3[%c5], %P4[%c5]}, %A0", ops); return ""; } [(set_attr "type" "neon_store4_one_lane")] ) ;; see comment on neon_vld1_lane for reason why the lane numbers are reversed ;; here on big endian targets. (define_insn "neon_vst4_lane" [(set (match_operand: 0 "neon_struct_operand" "=Um") (unspec: [(match_operand:XI 1 "s_register_operand" "w") (match_operand:SI 2 "immediate_operand" "i") (unspec:VQ_HS [(const_int 0)] UNSPEC_VSTRUCTDUMMY)] UNSPEC_VST4_LANE))] "TARGET_NEON" { HOST_WIDE_INT lane = NEON_ENDIAN_LANE_N(mode, INTVAL (operands[2])); HOST_WIDE_INT max = GET_MODE_NUNITS (mode); int regno = REGNO (operands[1]); rtx ops[6]; if (lane >= max / 2) { lane -= max / 2; regno += 2; } ops[0] = operands[0]; ops[1] = gen_rtx_REG (DImode, regno); ops[2] = gen_rtx_REG (DImode, regno + 4); ops[3] = gen_rtx_REG (DImode, regno + 8); ops[4] = gen_rtx_REG (DImode, regno + 12); ops[5] = GEN_INT (lane); output_asm_insn ("vst4.\t{%P1[%c5], %P2[%c5], %P3[%c5], %P4[%c5]}, %A0", ops); return ""; } [(set_attr "type" "neon_store4_4reg")] ) (define_insn "neon_vec_unpack_lo_" [(set (match_operand: 0 "register_operand" "=w") (SE: (vec_select: (match_operand:VU 1 "register_operand" "w") (match_operand:VU 2 "vect_par_constant_low" ""))))] "TARGET_NEON && !BYTES_BIG_ENDIAN" "vmovl. %q0, %e1" [(set_attr "type" "neon_shift_imm_long")] ) (define_insn "neon_vec_unpack_hi_" [(set (match_operand: 0 "register_operand" "=w") (SE: (vec_select: (match_operand:VU 1 "register_operand" "w") (match_operand:VU 2 "vect_par_constant_high" ""))))] "TARGET_NEON && !BYTES_BIG_ENDIAN" "vmovl. %q0, %f1" [(set_attr "type" "neon_shift_imm_long")] ) (define_expand "vec_unpack_hi_" [(match_operand: 0 "register_operand") (SE: (match_operand:VU 1 "register_operand"))] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtvec v = rtvec_alloc (/2) ; rtx t1; int i; for (i = 0; i < (/2); i++) RTVEC_ELT (v, i) = GEN_INT ((/2) + i); t1 = gen_rtx_PARALLEL (mode, v); emit_insn (gen_neon_vec_unpack_hi_ (operands[0], operands[1], t1)); DONE; } ) (define_expand "vec_unpack_lo_" [(match_operand: 0 "register_operand") (SE: (match_operand:VU 1 "register_operand"))] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtvec v = rtvec_alloc (/2) ; rtx t1; int i; for (i = 0; i < (/2) ; i++) RTVEC_ELT (v, i) = GEN_INT (i); t1 = gen_rtx_PARALLEL (mode, v); emit_insn (gen_neon_vec_unpack_lo_ (operands[0], operands[1], t1)); DONE; } ) (define_insn "neon_vec_mult_lo_" [(set (match_operand: 0 "register_operand" "=w") (mult: (SE: (vec_select: (match_operand:VU 1 "register_operand" "w") (match_operand:VU 2 "vect_par_constant_low" ""))) (SE: (vec_select: (match_operand:VU 3 "register_operand" "w") (match_dup 2)))))] "TARGET_NEON && !BYTES_BIG_ENDIAN" "vmull. %q0, %e1, %e3" [(set_attr "type" "neon_mul__long")] ) (define_expand "vec_widen_mult_lo_" [(match_operand: 0 "register_operand") (SE: (match_operand:VU 1 "register_operand")) (SE: (match_operand:VU 2 "register_operand"))] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtvec v = rtvec_alloc (/2) ; rtx t1; int i; for (i = 0; i < (/2) ; i++) RTVEC_ELT (v, i) = GEN_INT (i); t1 = gen_rtx_PARALLEL (mode, v); emit_insn (gen_neon_vec_mult_lo_ (operands[0], operands[1], t1, operands[2])); DONE; } ) (define_insn "neon_vec_mult_hi_" [(set (match_operand: 0 "register_operand" "=w") (mult: (SE: (vec_select: (match_operand:VU 1 "register_operand" "w") (match_operand:VU 2 "vect_par_constant_high" ""))) (SE: (vec_select: (match_operand:VU 3 "register_operand" "w") (match_dup 2)))))] "TARGET_NEON && !BYTES_BIG_ENDIAN" "vmull. %q0, %f1, %f3" [(set_attr "type" "neon_mul__long")] ) (define_expand "vec_widen_mult_hi_" [(match_operand: 0 "register_operand") (SE: (match_operand:VU 1 "register_operand")) (SE: (match_operand:VU 2 "register_operand"))] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtvec v = rtvec_alloc (/2) ; rtx t1; int i; for (i = 0; i < (/2) ; i++) RTVEC_ELT (v, i) = GEN_INT (/2 + i); t1 = gen_rtx_PARALLEL (mode, v); emit_insn (gen_neon_vec_mult_hi_ (operands[0], operands[1], t1, operands[2])); DONE; } ) (define_insn "neon_vec_shiftl_" [(set (match_operand: 0 "register_operand" "=w") (SE: (ashift:VW (match_operand:VW 1 "register_operand" "w") (match_operand: 2 "const_neon_scalar_shift_amount_operand" ""))))] "TARGET_NEON" { return "vshll. %q0, %P1, %2"; } [(set_attr "type" "neon_shift_imm_long")] ) (define_expand "vec_widen_shiftl_lo_" [(match_operand: 0 "register_operand") (SE: (match_operand:VU 1 "register_operand")) (match_operand:SI 2 "immediate_operand")] "TARGET_NEON && !BYTES_BIG_ENDIAN" { emit_insn (gen_neon_vec_shiftl_ (operands[0], simplify_gen_subreg (mode, operands[1], mode, 0), operands[2])); DONE; } ) (define_expand "vec_widen_shiftl_hi_" [(match_operand: 0 "register_operand") (SE: (match_operand:VU 1 "register_operand")) (match_operand:SI 2 "immediate_operand")] "TARGET_NEON && !BYTES_BIG_ENDIAN" { emit_insn (gen_neon_vec_shiftl_ (operands[0], simplify_gen_subreg (mode, operands[1], mode, GET_MODE_SIZE (mode)), operands[2])); DONE; } ) ;; Vectorize for non-neon-quad case (define_insn "neon_unpack_" [(set (match_operand: 0 "register_operand" "=w") (SE: (match_operand:VDI 1 "register_operand" "w")))] "TARGET_NEON" "vmovl. %q0, %P1" [(set_attr "type" "neon_move")] ) (define_expand "vec_unpack_lo_" [(match_operand: 0 "register_operand") (SE:(match_operand:VDI 1 "register_operand"))] "TARGET_NEON" { rtx tmpreg = gen_reg_rtx (mode); emit_insn (gen_neon_unpack_ (tmpreg, operands[1])); emit_insn (gen_neon_vget_low (operands[0], tmpreg)); DONE; } ) (define_expand "vec_unpack_hi_" [(match_operand: 0 "register_operand") (SE:(match_operand:VDI 1 "register_operand"))] "TARGET_NEON" { rtx tmpreg = gen_reg_rtx (mode); emit_insn (gen_neon_unpack_ (tmpreg, operands[1])); emit_insn (gen_neon_vget_high (operands[0], tmpreg)); DONE; } ) (define_insn "neon_vec_mult_" [(set (match_operand: 0 "register_operand" "=w") (mult: (SE: (match_operand:VDI 1 "register_operand" "w")) (SE: (match_operand:VDI 2 "register_operand" "w"))))] "TARGET_NEON" "vmull. %q0, %P1, %P2" [(set_attr "type" "neon_mul__long")] ) (define_expand "vec_widen_mult_hi_" [(match_operand: 0 "register_operand") (SE: (match_operand:VDI 1 "register_operand")) (SE: (match_operand:VDI 2 "register_operand"))] "TARGET_NEON" { rtx tmpreg = gen_reg_rtx (mode); emit_insn (gen_neon_vec_mult_ (tmpreg, operands[1], operands[2])); emit_insn (gen_neon_vget_high (operands[0], tmpreg)); DONE; } ) (define_expand "vec_widen_mult_lo_" [(match_operand: 0 "register_operand") (SE: (match_operand:VDI 1 "register_operand")) (SE: (match_operand:VDI 2 "register_operand"))] "TARGET_NEON" { rtx tmpreg = gen_reg_rtx (mode); emit_insn (gen_neon_vec_mult_ (tmpreg, operands[1], operands[2])); emit_insn (gen_neon_vget_low (operands[0], tmpreg)); DONE; } ) (define_expand "vec_widen_shiftl_hi_" [(match_operand: 0 "register_operand") (SE: (match_operand:VDI 1 "register_operand")) (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { rtx tmpreg = gen_reg_rtx (mode); emit_insn (gen_neon_vec_shiftl_ (tmpreg, operands[1], operands[2])); emit_insn (gen_neon_vget_high (operands[0], tmpreg)); DONE; } ) (define_expand "vec_widen_shiftl_lo_" [(match_operand: 0 "register_operand") (SE: (match_operand:VDI 1 "register_operand")) (match_operand:SI 2 "immediate_operand")] "TARGET_NEON" { rtx tmpreg = gen_reg_rtx (mode); emit_insn (gen_neon_vec_shiftl_ (tmpreg, operands[1], operands[2])); emit_insn (gen_neon_vget_low (operands[0], tmpreg)); DONE; } ) ; FIXME: These instruction patterns can't be used safely in big-endian mode ; because the ordering of vector elements in Q registers is different from what ; the semantics of the instructions require. (define_insn "vec_pack_trunc_" [(set (match_operand: 0 "register_operand" "=&w") (vec_concat: (truncate: (match_operand:VN 1 "register_operand" "w")) (truncate: (match_operand:VN 2 "register_operand" "w"))))] "TARGET_NEON && !BYTES_BIG_ENDIAN" "vmovn.i\t%e0, %q1\;vmovn.i\t%f0, %q2" [(set_attr "type" "multiple") (set_attr "length" "8")] ) ;; For the non-quad case. (define_insn "neon_vec_pack_trunc_" [(set (match_operand: 0 "register_operand" "=w") (truncate: (match_operand:VN 1 "register_operand" "w")))] "TARGET_NEON && !BYTES_BIG_ENDIAN" "vmovn.i\t%P0, %q1" [(set_attr "type" "neon_move_narrow_q")] ) (define_expand "vec_pack_trunc_" [(match_operand: 0 "register_operand") (match_operand:VSHFT 1 "register_operand") (match_operand:VSHFT 2 "register_operand")] "TARGET_NEON && !BYTES_BIG_ENDIAN" { rtx tempreg = gen_reg_rtx (mode); emit_insn (gen_move_lo_quad_ (tempreg, operands[1])); emit_insn (gen_move_hi_quad_ (tempreg, operands[2])); emit_insn (gen_neon_vec_pack_trunc_ (operands[0], tempreg)); DONE; }) (define_insn "neon_vabd_2" [(set (match_operand:VF 0 "s_register_operand" "=w") (abs:VF (minus:VF (match_operand:VF 1 "s_register_operand" "w") (match_operand:VF 2 "s_register_operand" "w"))))] "TARGET_NEON && flag_unsafe_math_optimizations" "vabd. %0, %1, %2" [(set_attr "type" "neon_fp_abd_s")] ) (define_insn "neon_vabd_3" [(set (match_operand:VF 0 "s_register_operand" "=w") (abs:VF (unspec:VF [(match_operand:VF 1 "s_register_operand" "w") (match_operand:VF 2 "s_register_operand" "w")] UNSPEC_VSUB)))] "TARGET_NEON && flag_unsafe_math_optimizations" "vabd. %0, %1, %2" [(set_attr "type" "neon_fp_abd_s")] ) (define_insn "neon_mmlav16qi" [(set (match_operand:V4SI 0 "register_operand" "=w") (plus:V4SI (unspec:V4SI [(match_operand:V16QI 2 "register_operand" "w") (match_operand:V16QI 3 "register_operand" "w")] MATMUL) (match_operand:V4SI 1 "register_operand" "0")))] "TARGET_I8MM" "vmmla.\t%q0, %q2, %q3" [(set_attr "type" "neon_mla_s_q")] ) (define_insn "neon_vbfdot" [(set (match_operand:VCVTF 0 "register_operand" "=w") (plus:VCVTF (match_operand:VCVTF 1 "register_operand" "0") (unspec:VCVTF [ (match_operand: 2 "register_operand" "w") (match_operand: 3 "register_operand" "w")] UNSPEC_DOT_S)))] "TARGET_BF16_SIMD" "vdot.bf16\\t%0, %2, %3" [(set_attr "type" "neon_dot")] ) (define_insn "neon_vbfdot_lanev4bf" [(set (match_operand:VCVTF 0 "register_operand" "=w") (plus:VCVTF (match_operand:VCVTF 1 "register_operand" "0") (unspec:VCVTF [ (match_operand: 2 "register_operand" "w") (match_operand:V4BF 3 "register_operand" "x") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_DOT_S)))] "TARGET_BF16_SIMD" "vdot.bf16\\t%0, %2, %P3[%c4]" [(set_attr "type" "neon_dot")] ) (define_insn "neon_vbfdot_lanev8bf" [(set (match_operand:VCVTF 0 "register_operand" "=w") (plus:VCVTF (match_operand:VCVTF 1 "register_operand" "0") (unspec:VCVTF [ (match_operand: 2 "register_operand" "w") (match_operand:V8BF 3 "register_operand" "x") (match_operand:SI 4 "immediate_operand" "i")] UNSPEC_DOT_S)))] "TARGET_BF16_SIMD" { int lane = INTVAL (operands[4]); int half = GET_MODE_NUNITS (GET_MODE (operands[3])) / 4; if (lane < half) return "vdot.bf16\\t%0, %2, %e3[%c4]"; else { operands[4] = GEN_INT (lane - half); return "vdot.bf16\\t%0, %2, %f3[%c4]"; } } [(set_attr "type" "neon_dot")] ) (define_insn "neon_vbfcvtv4sf" [(set (match_operand:VBFCVT 0 "register_operand" "=w") (unspec:VBFCVT [(match_operand:V4SF 1 "register_operand" "w")] UNSPEC_BFCVT))] "TARGET_BF16_SIMD" "vcvt.bf16.f32\\t%0, %q1" [(set_attr "type" "neon_fp_cvt_narrow_s_q")] ) (define_insn "neon_vbfcvtv4sf_highv8bf" [(set (match_operand:V8BF 0 "register_operand" "=w") (unspec:V8BF [(match_operand:V8BF 1 "register_operand" "0") (match_operand:V4SF 2 "register_operand" "w")] UNSPEC_BFCVT_HIGH))] "TARGET_BF16_SIMD" "vcvt.bf16.f32\\t%f0, %q2" [(set_attr "type" "neon_fp_cvt_narrow_s_q")] ) (define_insn "neon_vbfcvtsf" [(set (match_operand:BF 0 "register_operand" "=t") (unspec:BF [(match_operand:SF 1 "register_operand" "t")] UNSPEC_BFCVT))] "TARGET_BF16_FP" "vcvtb.bf16.f32\\t%0, %1" [(set_attr "type" "f_cvt")] ) (define_insn "neon_vbfcvt" [(set (match_operand:V4SF 0 "register_operand" "=w") (unspec:V4SF [(match_operand:VBFCVT 1 "register_operand" "w")] UNSPEC_BFCVT))] "TARGET_BF16_SIMD" "vshll.u32\\t%q0, %1, #16" [(set_attr "type" "neon_shift_imm_q")] ) (define_insn "neon_vbfcvt_highv8bf" [(set (match_operand:V4SF 0 "register_operand" "=w") (unspec:V4SF [(match_operand:V8BF 1 "register_operand" "w")] UNSPEC_BFCVT_HIGH))] "TARGET_BF16_SIMD" "vshll.u32\\t%q0, %f1, #16" [(set_attr "type" "neon_shift_imm_q")] ) ;; Convert a BF scalar operand to SF via VSHL. ;; VSHL doesn't accept 32-bit registers where the BF and SF scalar operands ;; would be allocated, therefore the operands must be converted to intermediate ;; vectors (i.e. V2SI) in order to apply 64-bit registers. (define_expand "neon_vbfcvtbf" [(match_operand:SF 0 "register_operand") (unspec:SF [(match_operand:BF 1 "register_operand")] UNSPEC_BFCVT)] "TARGET_BF16_FP" { rtx op0 = gen_reg_rtx (V2SImode); rtx op1 = gen_reg_rtx (V2SImode); emit_insn (gen_neon_vbfcvtbf_cvtmodev2si (op1, operands[1])); emit_insn (gen_neon_vshl_nv2si (op0, op1, gen_int_mode(16, SImode))); emit_insn (gen_neon_vbfcvtbf_cvtmodesf (operands[0], op0)); DONE; }) ;; Convert BF mode to V2SI and V2SI to SF. ;; Implement this by allocating a 32-bit operand in the low half of a 64-bit ;; register indexed by a 32-bit sub-register number. ;; This will generate reloads but compiler can optimize out the moves. ;; Use 'x' constraint to guarantee the 32-bit sub-registers in an indexable ;; range so that to avoid extra moves. (define_insn "neon_vbfcvtbf_cvtmode" [(set (match_operand:VBFCVTM 0 "register_operand" "=x") (unspec:VBFCVTM [(match_operand: 1 "register_operand" "0")] UNSPEC_BFCVT))] "TARGET_BF16_FP" "" ) (define_insn "neon_vmmlav8bf" [(set (match_operand:V4SF 0 "register_operand" "=w") (plus:V4SF (match_operand:V4SF 1 "register_operand" "0") (unspec:V4SF [(match_operand:V8BF 2 "register_operand" "w") (match_operand:V8BF 3 "register_operand" "w")] UNSPEC_BFMMLA)))] "TARGET_BF16_SIMD" "vmmla.bf16\\t%q0, %q2, %q3" [(set_attr "type" "neon_fp_mla_s_q")] ) (define_insn "neon_vfmav8bf" [(set (match_operand:V4SF 0 "register_operand" "=w") (plus: V4SF (match_operand:V4SF 1 "register_operand" "0") (unspec:V4SF [(match_operand:V8BF 2 "register_operand" "w") (match_operand:V8BF 3 "register_operand" "w")] BF_MA)))] "TARGET_BF16_SIMD" "vfma.bf16\\t%q0, %q2, %q3" [(set_attr "type" "neon_fp_mla_s_q")] ) (define_insn "neon_vfma_lanev8bf" [(set (match_operand:V4SF 0 "register_operand" "=w") (plus: V4SF (match_operand:V4SF 1 "register_operand" "0") (unspec:V4SF [(match_operand:V8BF 2 "register_operand" "w") (match_operand:V4BF 3 "register_operand" "x") (match_operand:SI 4 "const_int_operand" "n")] BF_MA)))] "TARGET_BF16_SIMD" "vfma.bf16\\t%q0, %q2, %P3[%c4]" [(set_attr "type" "neon_fp_mla_s_scalar_q")] ) (define_expand "neon_vfma_laneqv8bf" [(set (match_operand:V4SF 0 "register_operand" "=w") (plus: V4SF (match_operand:V4SF 1 "register_operand" "0") (unspec:V4SF [(match_operand:V8BF 2 "register_operand" "w") (match_operand:V8BF 3 "register_operand" "x") (match_operand:SI 4 "const_int_operand" "n")] BF_MA)))] "TARGET_BF16_SIMD" { int lane = INTVAL (operands[4]); gcc_assert (IN_RANGE(lane, 0, 7)); if (lane < 4) { emit_insn (gen_neon_vfma_lanev8bf (operands[0], operands[1], operands[2], operands[3], operands[4])); } else { rtx op_highpart = gen_reg_rtx (V4BFmode); emit_insn (gen_neon_vget_highv8bf (op_highpart, operands[3])); operands[4] = GEN_INT (lane - 4); emit_insn (gen_neon_vfma_lanev8bf (operands[0], operands[1], operands[2], op_highpart, operands[4])); } DONE; } [(set_attr "type" "neon_fp_mla_s_scalar_q")] )